To print higher-resolution math symbols, click the

Hi-Res Fonts for Printing button on the jsMath control panel.

Maths Net : A-Level ${ }^{+}$

Steve Blades

Your account expires on: 7 May, 2012

This paper contains a set of questions followed by the corresponding mark schemes. The time you should spend on each question together with its worth in marks is also given. The content of this paper is based on material from a wide selection of national and international examination boards and organisations.

You are advised to have:

a set of geometrical equipment, pen, HB pencil, eraser. Check if you are allowed a calculator. Some examinations, but not all, allow calculators, including graphical models.

NOTES: The following browsers have been tested with this facility: Mozilla Firefox 3.x, 4.x; Microsoft Internet Explorer versions 6, 7, 8 and 9 RC (see the website for the small font problem with IE7 and IE8 was tested in IE7 compatibility mode), Apple Safari and Google Chrome. Best results are when the background printing of images and colours is enabled (not available in Chrome on Windows/Mac or Safari on Windows). There are known printing format issues with the Opera web browser and we do not recommend using this browser.

Many of the questions use the jsMath applet. This requires special fonts to be installed for successful printing. These fonts can be downloaded from: http://www.math.union.edu/~dpvc/jsMath/. Use the Download the TeX fonts option. Full instructions for their use can be found at: http://pubpages.unh.edu/~jsh3/jsMath/
www.mathsnetalevel.com is available on annual subscription, where you will find 8024 pages of content, including 2906 interative questions that can be printed and 955 on-line assessments. Visit www.chartwellyorke.com to find out further details about subscribing.

Q1-ID: 439
[7 marks, 8 minutes]
Solve the equation

$$
18 \cosh x+6 \sinh x=17
$$

Give each answer in the form Ina, where a is a rational number.

Q2-ID: 598
[5 marks, 6 minutes]
The displacement of a particle from a fixed point 0 at time t is given by $x=\sinh t$
At time T the displacement $x=\frac{4}{5}$
(a) Find cosh T.
(b) Hence find e^{\top} and T .

Q3-ID: 2066
Find the values of x for which

$$
25 \cosh x-19 \sinh x=35
$$

giving your answers as natural logarithms.

Q4-ID: 2069
(a) Using the definition of cosh x in terms of exponentials, prove that $4 \cosh ^{3} x-3 \cosh x=\cosh 3 x$.
(b) Hence, or otherwise, solve the equation $\cosh 3 x=17 \cosh x$
giving your answers as natural logarithms.

Q5 - ID: 4398
(a) Using the definition of sinh x in terms of exponentials, prove that $4 \sinh ^{3} x=\sinh 3 x-3 \sinh x$.
(b) Find the range of values of the constant k for which the equation $\sinh 3 x=k \sinh x$
has real roots other than $x=0$.
(c) Given that $k=5$ solve the equation in part (b), giving the non- zero answers in logarithmic form.

Q6 - ID: 415
An ellipse has equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
(a) Find the value of of the eccentricity e.
(b) State the coordinates of the foci of the ellipse

Q7-ID: 520
[5 marks, 6 minutes]
The point S, which lies on the positive x - axis, is a focus of the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$
Given that S is also the focus of a parabola P, with
vertex at the origin, find
(a) a cartesian equation for P,
(b) an equation for the directrix of P.

Q8-ID: 2067
The hyperbola H has equation $\frac{\mathrm{x}^{2}}{36}-\frac{\mathrm{y}^{2}}{16}=1$
Find
(a) the value of the eccentricity of H ,
(b) the distance between the foci of H .

Q9-ID: 885
Find the exact value of the radius of curvature of the curve
with equation $\mathrm{y}=\arcsin \mathrm{x}$ at the point where $\mathrm{x}=\frac{\sqrt{2}}{2}$

Q10 - ID: 750
The curve C has equation $y=\tan ^{-1} x^{2}, 0 \leq y<\frac{\pi}{2}$.
Find, in exact form, the value of the radius of curvature of C at the point where $x=1$

Q11-ID: 657
(a) Show that, for $x=\ln k$, where k is a positive constant,

$$
\cosh 5 x=\frac{k^{10}+1}{2 k^{5}}
$$

Given that $f(x)=p x-\tanh 5 x$, where p is a constant,
(b) find the value of p for which $f(x)$ has a stationary
value at $x=\ln 2$, giving your answer as an exact fraction.

Q12 - ID: 438

The curve with equation

$$
y=-x+\tanh 64 x, x \geq 0
$$

has a maximum turning point A.
(a) Find, in exact logarithmic form, the x-coordinate of A.
(b) Show that the y-coordinate of A is $\frac{\sqrt{63}}{8}-\frac{1}{64} \ln (8+\sqrt{63})$.

Q13-ID: 516

[4 marks, 5 minutes]
Given that $y=\arctan 5 x$, and assuming the derivative of
$\tan x$, prove that

$$
\frac{d y}{d x}=\frac{5}{1+25 x^{2}}
$$

Q14-ID: 2605

[6 marks, 7 minutes]
Given that $f(x)=\arccos 2 x$,
(a) Find $f^{\prime}(x)$
(b) Use a standard series to expand $f^{\prime}(x)$ and hence
find the series for $f(x)$ in ascending powers of x^{2}, up to the term in x^{5}.

Q15-ID: 5305
Show that $f(x)=\sin ^{-1} x-6 x^{\frac{3}{2}}+1$ has a stationary value when x satisfies $81 x^{3}-81 x+1=0$

Q16-ID: 5987
[6 marks, 7 minutes]
A normal to the graph of $y=\arctan (x-6)$, for $x>0$, has
equation $y=-2 x+c$, where $c \in \Re$. Find the value of c.

Q17-ID: 473
[7 marks, 8 minutes]
A curve has parametric equations

$$
x=5 \cos ^{3} t, y=5 \sin ^{3} t, 0 \leq t \leq \frac{\pi}{2}
$$

The curve is rotated through 2π radians about the x - axis. Find the exact value of the area of the curved surface generated.

Q18-ID: 794
(a) Find the integral of $\int \frac{3+x}{\sqrt{1-16 x^{2}}} d x$,
(b) Find, to 3 decimal places, the value of

$$
\int_{0}^{0.2} \frac{3+x}{\sqrt{1-16 x^{2}}} d x
$$

Evaluate $\int_{2}^{6} \frac{1}{\sqrt{x^{2}-4 x+20}} d x$,
giving your answer as an exact logarithm.

Q20 - ID: 1747
[5 marks, 6 minutes]
Evaluate $\int_{1}^{3} \frac{1}{\sqrt{x^{2}+4 x+8}} d x$,
giving your answer as an exact logarithm.

Q21-ID: 2607
[5 marks, 6 minutes]
Find $\int_{0}^{2} \frac{1}{\sqrt{16 x^{2}+25}} d x$,
giving your answer in an exact logarithmic form.

Q22 - ID: 2608
[4 marks, 5 minutes]
Show that $\int_{-\ln 2}^{\ln 2}(22 \cosh x-4 \cosh 2 x) d x=25.5$

Q23-ID: 4234
Show that

$$
\int_{5}^{6} \frac{7+x}{\sqrt{x^{2}-9}} d x=7 \ln \left(\frac{6+\sqrt{27}}{5+\sqrt{16}}\right)+\sqrt{27}-\sqrt{16}
$$

Q24-ID: 4700
(a) Prove that $\frac{d}{d x}\left(\cosh ^{-1} 8 x\right)=\frac{8}{\sqrt{64 x^{2}-1}}$.
(b) Hence, or otherwise, find $\int \frac{1}{\sqrt{64 x^{2}-1}} d x$

Q25-ID: 545
(a) Given that $\mathrm{y}=\arctan 3 \mathrm{x}$, and assuming the derivative of $\tan x$, prove that

$$
\frac{d y}{d x}=\frac{3}{1+9 x^{2}}
$$

(b) Show that

$$
\int_{0}^{\frac{\sqrt{3}}{3}} 6 x \arctan 3 x d x=\frac{1}{9}(4 \pi-3 \sqrt{3})
$$

Q26-ID: 2604
Use a trigonometrical substitution to show that

$$
\int_{0}^{3} \frac{1}{\left(36-x^{2}\right)^{\frac{3}{2}}} \mathrm{dx}=\frac{1}{36 \sqrt{3}}
$$

Q27-ID: 856

$$
I_{n}=\int x^{n} e^{5 x} d x, n \geq 0
$$

(a) Prove that for $n \geq 1$

$$
I_{n}=\frac{1}{5}\left(x^{n} e^{5 x}-n l_{n-1}\right)
$$

(b) Find, in terms of e, the exact value of

$$
\int_{0}^{1} x^{2} e^{5 x} d x
$$

Q28-ID: 5106
The line I has equation $r=\left(\begin{array}{c}-3 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-3 \\ 3 \\ 4\end{array}\right)$.
(a) Write down a vector equation for I in the form $(r-a) \times b=0$.
(b) Write down cartesian equations for I.
(c) Find the direction cosines of I and explain, geometrically, what these represent.

Q29 - ID: 5988
Given any two non- zero vectors a and b, show that

$$
|a \times b|^{2}=|a|^{2}|b|^{2}-(a \cdot b)^{2}
$$

Q30-ID: 854
The line I_{1} has equation

$$
r=1 i+3 j+3 k+\lambda(4 i+4 j+2 k)
$$

and the line I_{2} has equation

$$
r=3 i+p j+3 k+\mu(3 i+3 j+1 k)
$$

The plane Π_{1} contains I_{1} and I_{2}.
(a) Find a vector which is normal to Π_{1}.
(b) Show that an equation for Π_{1} is $-2 x+2 y-0 z=4$.
(c) Find the value of p.

The plane Π_{2} has equation $r_{*}(2 i+5 j+1 k)=2$.
d) Find an equation for the line of intersection of Π_{1} and Π_{2} giving your answer in the form

$$
(r-a) \times b=0
$$

Q31 - ID: 2554
[4 marks, 5 minutes]
Write down normal vectors to the planes $2 x+6 y+10 z=2$
and $4 x-8 y+4 z=7$.
Hence show that these planes are perpendicular to each other

The plane Π has equation $r=\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}10 \\ 4 \\ 6\end{array}\right)+\mu\left(\begin{array}{l}8 \\ 6 \\ 6\end{array}\right)$.
(a) Find an equation for $I I$ in the form $r * n=d$.
(b) State the geometrical significance of the value of d in this case.

A glass ornament OABCDEFG is a truncated pyramid on a rectangular base. All dimensions are in centimetres.
The vertices are at $A(0,30,0), B(30,30,0), C(30,0,0), D(18,9,18)$,
$E(18,21,18), F(6,21,18), G(6,9,18)$.
(a) Write down the vectors $\overrightarrow{C D}$ and $\overrightarrow{C B}$.
(b) Find the length of the edge CD.
(c) Show that the vector $1.5 i+k$ is perpendicular to the vectors $\overrightarrow{C D}$ and $\overrightarrow{C B}$.
(d) Hence find the cartesian equation of the plane BCDE.
(e) Write down vector equations for the lines OG and AF.
(f) Show OG and AF meet at the point P with coordinates $(10,15,30)$.

Y ou may assume that the lines CD and BE also meet at the point P.
The volume of a pyramid is $\frac{1}{3} \times$ area of base \times height.
(g) Find the volumes of the pyramids POABC and PDEFG.

Hence find the volume of the ornament.

Q34-ID: 5975
[14 marks, 17 minutes]
The points A, B, C have position vectors $i+j+4 k_{7} i+3 j+5 k_{,} 4 i+k$ respectively
and lie in the plane II. Find
(a) the area of the triangle $A B C$
(b) the shortest distance from C to the line $A B$
(c) the cartesian equation of the plane 11.

Q35-ID: 5976
[6 marks, 7 minutes]
The line L passes through the origin and is normal to the plane $I I: 7 x-4 y+6 z=-5$
It intersects II at the point D. Find
(a) the coordinates of the point D
(b) the distance of 11 from the origin.

The line L has equation $r=2 i+4 j+7 k+t(2 i+j+3 k)$, where $t \in R$.
Find the Cartesian equation of the plane which contains both the line L and the point $A(2,-2,5)$.

A ray of light coming from the point $(-2,-1,-1)$ is travelling in the direction
of vector $\left(\begin{array}{c}6 \\ 3 \\ -2\end{array}\right)$ and meets the plane $11: x+4 y+3 z-20=0$.
Find the angle that the ray of light makes with the plane.A.

Q38-ID: 7448
[6 marks, 7 minutes]
Find the vector equation of the line of intersection of the three planes represented by the following system of equations.
$5 x-8 y+2 z=4$
$10 x+4 y-6 z=1$
$-15 x-36 y--24 z=9$

Q39 - ID: 5849
[8 marks, 10 minutes]
(a) Write down normal vectors to the planes $7 x-y+z=3$ and $x-z=4$.
(b) Hence find the acute angle between the planes.
(c) Write down a vector equation of the line through $(3,1,3)$ perpendicular to the plane $7 x-y+z=3$.
(d) Find the point of intersection of this line with the plane.

Q40-ID: 413
The points A, B, C and D have position vectors $a=2 i+2 j+2 k$
$b=4 i+0 j+4 k, c=5 i+5 j+1 k$ and $d=6 i+2 j+1 k$ respectively.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$ and hence find the area of triangle $A B C$.
(b) Find the volume of the tetrahedron ABCD.
(c) Find the perpendicular distance of D to the plane containing
A, B and C.

The plane P passes through the points $A(-1,2,2), B(3,3,3)$
and $C(1,2,1)$
(a) Find a vector equation of the line perpendicular to P which
passes through the point $D(3,5,3)$
(b) Find the volume of the tetrahedron $A B C D$.
(c) Find the equation of P in the form $r . n=p$.

The perpendicular from D to the plane P meets P at the point E.
(d) Find the coordinates of E.
(e) Show that $D E=\frac{12}{41} \sqrt{41}$

The point F is the reflection of D in P.
(f) Find the coordinates of F.

Q42-ID: 587
[5 marks, 6 minutes]
Find the inverse of the matrix

$$
\left(\begin{array}{lll}
2 & 2 & 3 \\
1 & 3 & 1 \\
2 & 1 & 3
\end{array}\right)
$$

Q43-ID: 2076

$$
A=\left(\begin{array}{ccc}
k & 2 & -5 \\
0 & 0 & k \\
7 & 4 & 2
\end{array}\right)
$$

(a) Find values of k for which A is singular.
(b) Given that A is non- singular, find, in terms of k, A^{-1}.

Q44-ID: 5450
You are given that $A=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 1 & 0 \\ 0 & 3 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 1 & -1 \\ -2 & 3 & 2 \\ 6 & -9 & -1\end{array}\right)$.
(a) Calculate $A B$
(b) Write down A^{-1}

Q45-ID: 5406
The matrix A is given by $A=\left(\begin{array}{lll}a & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right)$
The matrix B is such that $A B=\left(\begin{array}{lll}a & 2 & 3 \\ 1 & 1 & 0 \\ 1 & 2 & 0\end{array}\right)$
(a) Show that $A B$ is non- singular.
(b) Find (AB $)^{-1}$
(c) Find B^{-1}

Let M be the matrix $\left(\begin{array}{ccc}a & 3 a & 0 \\ 0 & a & 1 \\ -3 & -3 & a\end{array}\right)$
Find all the values of a for which M is singular.

By using the determinant of an appropriate matrix, or otherwise, find the value of k for which the simultaneous equations

$$
\begin{aligned}
& 6 x-y+z=6 \\
& 5 y+z=5 \\
& x+k y+k z=6
\end{aligned}
$$

do not have a unique solution for x, y and z.

Q48-ID: 357

$$
A=\left(\begin{array}{cc}
7 & 4 \\
10 & 1
\end{array}\right)
$$

(a) Find the eigenvalues of A.
(b) Obtain the corresponding normalized eigenvectors.

Q49-ID: 858

$$
A=\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 5 & 4 \\
4 & 4 & 3
\end{array}\right)
$$

(a) Verify that $\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$ is an eigenvector of A and find the corresponding eigenvalue.
(b) Show that 9 is another eigenvalue of A and find the corresponding eigenvector.
(c) Give that the third eigenvector of A is $\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$, write down a matrix P and a diagonal matrix D such that $P^{\top} A P=D$

Q50 - ID: 555

$$
A=\left(\begin{array}{lll}
6 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & k
\end{array}\right)
$$

(a) Show that $\operatorname{det} A=8-4 k$
(b) Find A^{-1}.

Given that $k=2$ and that $E=\left(\begin{array}{c}0 \\ 4 \\ -4\end{array}\right)$ is an eigenvector of A,
(c) find the corresponding eigenvalue.

Q51-ID: 2073
The eigenvalues of the matrix M, where $M=\left(\begin{array}{cc}3 & -4 \\ 0 & 5\end{array}\right)$
are λ_{1} and λ_{2}.
(a) Find the value of λ_{1} and the value of λ_{2}.
(b) Find M^{-1}.
(c) Verify that the eigenvalues of M^{-1} are λ_{1}^{-1} and ${\lambda_{2}^{-1}}$.

A transformation $T: R^{2} \rightarrow R^{2}$ is represented by the matrix

$$
A=\left(\begin{array}{cc}
k & 3 \\
16 & -2
\end{array}\right) \text { where } \mathrm{k} \text { is a constant. }
$$

For the case $k=6$ find
(a) the two eigenvalues of A,
(b) a cartesian equation for each of the two lines passing through the origin which are invariant under T

Q53 - ID: 2077
Given that $\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right)$ is an eigenvector of the matric A, where
$A=\left(\begin{array}{ccc}2 & 3 & p \\ -3 & q & -3 \\ 4 & 4 & 4\end{array}\right)$ where p and q are constants.
(a) find the eigenvalue of A corresponding to $\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right)$
(b) find the value of p and the value of q.

Q54 - ID: 4399
[10 marks, 12 minutes]
You are given the matrix $M=\left(\begin{array}{cc}8 & 6 \\ -4 & -2\end{array}\right)$
(a) Find the eigenvalues and the corresponding eigenvectors of M.
(b) Write down a matrix P and a diagonal matrix D such that $P^{-1} M P=D$.

Q55 - ID: 5104
[8 marks, 10 minutes]
The matrix T has eigenvalues 2 and -2 , with corresponding eigenvectors $\binom{1}{1}$ and $\binom{3}{4}$ respectively.
(a) Given that $\mathrm{T}=\mathrm{UDU}^{-1}$, where D is a diagonal matrix, write down suitable matrices U, D and U^{-1}.
(b) Hence prove that, for all even positive integers $n, T^{n}=f(n)$ l
where $f(n)$ is a function of n, and I is the 2×2 identity matrix.

Q56-ID: 5105
A system of equations is given by

$$
\begin{aligned}
& 2 x+2 y+2 z=-4 \\
& 1 x-3 y+8 z=5 \\
& a x+6 y+2 z=b
\end{aligned}
$$

where a and b are constants.
(a) Find the unique solution of the system in the case when $a=4$ and $b=2$.
(b) Determine the value of a for which the system does not have a unique solution.
(c) For this value of a, find the value of b such that the system of equations is consistent.

A1-ID: 439
[7 marks, 8 minutes]

$$
\begin{align*}
& \text { equation } \Rightarrow 18\left(\frac{e^{x}+e^{-x}}{2}\right)+6\left(\frac{e^{x}-e^{-x}}{2}\right)=17 \\
& \Rightarrow 18\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)+6\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)=34 \\
& \Rightarrow 18\left(e^{2 x}+1\right)+6\left(e^{2 x}-1\right)=34 e^{x} \\
& \Rightarrow 24 \mathrm{e}^{2 x}-34 \mathrm{e}^{x}+12=0 \\
& \Rightarrow 12 e^{2 x}-17 e^{x}+6=0 \\
& \Rightarrow\left(4 \mathrm{e}^{\mathrm{x}}-3\right)\left(3 \mathrm{e}^{\mathrm{x}}-2\right)=0 \\
& \Rightarrow \mathrm{e}^{\mathrm{x}}=\frac{3}{4} \text { or } \frac{2}{3} \\
& \Rightarrow x=\ln \frac{3}{4} \text { or } \ln \frac{2}{3}
\end{align*}
$$

(a) $\cosh ^{2} \mathrm{~T}=1+\sinh ^{2} \mathrm{~T}=1+\frac{16}{25}=\frac{41}{25}$

$$
\Rightarrow \cosh T=\frac{\sqrt{41}}{5}
$$

(b) $\quad e^{T}=\cosh T+\sinh T$

$$
\begin{align*}
& =\frac{4}{5}+\frac{\sqrt{41}}{5} \\
& =\frac{4+\sqrt{41}}{5} \\
T & =\ln \frac{4+\sqrt{41}}{5}
\end{align*}
$$

$\mid \mathrm{Al}$

A3-ID: 2066
[6 marks, 7 minutes]

$$
\begin{array}{rlrl}
\text { equation } & \Rightarrow 25\left(\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}}{2}\right)-19\left(\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}}{2}\right)=35 & & \mid \mathrm{B} 1 \\
& \Rightarrow 25\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}\right)-19\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)=70 & \\
& \Rightarrow 25\left(\mathrm{e}^{2 \mathrm{x}}+1\right)-19\left(\mathrm{e}^{2 \mathrm{x}}-1\right)=70 \mathrm{e}^{\mathrm{x}} & & \\
& \Rightarrow 6 \mathrm{e}^{2 \mathrm{x}}-70 \mathrm{e}^{\mathrm{x}}+44=0 & & \mid \mathrm{M} 1 \mathrm{~A} 1 \\
& \Rightarrow\left(6 \mathrm{e}^{\mathrm{x}}-4\right)\left(\mathrm{e}^{\mathrm{x}}-11\right)=0 & & \mid \mathrm{M} 1 \\
& \Rightarrow \mathrm{e}^{\mathrm{x}}=\frac{4}{6} \text { or } 11 & & \text { |A1 } \\
& \Rightarrow x=\ln \frac{4}{6} \text { or } \ln 11 & & \text { |A1 }
\end{array}
$$

A4-ID: 2069
(a)

$$
\begin{aligned}
\text { LHS } & =4\left(\frac{e^{x}+e^{-x}}{2}\right)^{3}-3\left(\frac{e^{x}+e^{-x}}{2}\right) \\
& =\frac{e^{3 x}+3 e^{x}+3 e^{-x}+e^{-3 x}}{2}-\frac{3 e^{x}+3 e^{-x}}{2} \\
& =\frac{e^{3 x}+e^{-3 x}}{2}=\text { RHS }
\end{aligned}
$$

(b) equation $\Rightarrow 4 \cosh ^{3} x-3 \cosh x=17 \cosh x$

$$
\Rightarrow \cosh x\left(4 \cosh ^{2} x-20\right)=0 \Rightarrow \cosh x=\sqrt{5}
$$

$\Rightarrow x= \pm \cosh ^{-1} \sqrt{5}$
$\Rightarrow x=\ln (\sqrt{5} \pm 2$
|A2

A5-ID: 4398
(a) \quad LHS $=4\left(\frac{e^{x}-e^{-x}}{2}\right)^{3}$

$$
=\frac{e^{3 x}-3 e^{x}+3 e^{-x}-e^{-3 x}}{2}
$$

$$
\begin{align*}
\text { RHS } & =\frac{e^{3 x}-e^{-3 x}}{2}-3 \frac{e^{x}-e^{-x}}{2} \\
& =\frac{e^{3 x}-e^{-3 x}}{2}-3 \frac{e^{x}-e^{-x}}{2}=\text { LHS }
\end{align*}
$$

(b) equation $\Rightarrow 4 \sinh ^{3} x+3 \sinh x=k \sinh x$
$\Rightarrow 4 \sinh ^{3} x-(k-3) \sinh x=0$

$$
\Rightarrow 4 \sinh ^{2} x-(k-3)=0 \Rightarrow 4 \sinh ^{2} x=k-3
$$

$$
\Rightarrow k>3
$$

(c) $\quad \mathrm{k}=5 \Rightarrow 4 \sinh ^{2} \mathrm{x}=2$

$$
\begin{align*}
& \Rightarrow \sinh x= \pm \frac{\sqrt{2}}{2} \\
& \Rightarrow x= \pm \sinh ^{-1} \frac{\sqrt{2}}{2}= \pm \ln \left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}\right)
\end{align*}
$$

A6-ID: 415
(a) $b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 9=16\left(1-e^{2}\right)$
$\Rightarrow 0.5625=1-e^{2}$
$\Rightarrow e^{2}=1-0.5625$
$\Rightarrow e=0.661$
(b)

$$
\begin{aligned}
\text { foci } & =(\pm a e, 0) \\
& =(\pm 2.65,0)
\end{aligned}
$$

A7-ID: 520
(a) $b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{\sqrt{8}}{3}$
|M1A1
\Rightarrow coords of $S=(\sqrt{8}, 0)$
\Rightarrow equation of $P: y^{2}=4 \sqrt{8} x$
|M1A1
(b) directrix: $x=-\sqrt{8}$

A8-ID: 2067
(a) $b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow 16=36\left(e^{2}-1\right)$

$$
\Rightarrow e=\sqrt{\frac{16}{36}+1}=\frac{\sqrt{52}}{6}
$$

(b)
distance $=2$ ae $=2 \times 6 \times \frac{\sqrt{52}}{6}=2 \sqrt{52}$
|M1A1

A9 - ID: 885

$$
\begin{align*}
\frac{d y}{d x} & =\frac{1}{\sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-\frac{2}{4}}} \text { at } x=\frac{\sqrt{2}}{2} \\
\frac{\mathrm{~d}^{2} y}{d x^{2}} & =-\frac{1}{2}\left(1-x^{2}\right)^{-3 / 2} \cdot 2 x=x\left(1-x^{2}\right)^{-3 / 2} \\
\rho & =\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{\mathrm{~d}^{2} y}{\mathrm{dx}}}=\frac{\left[1+\frac{1}{1-x^{2}}\right]^{3 / 2}}{x\left(1-x^{2}\right)^{-3 / 2}} \\
& =\frac{\left[1-x^{2}+1\right]^{3 / 2}}{x}=\frac{\left[2-x^{2}\right]^{3 / 2}}{x} \\
& =\frac{\left[2-\left(\frac{\sqrt{2}}{2}\right)^{2}\right]^{3 / 2}}{\frac{\sqrt{2}}{2}}=\frac{\left[2-\frac{2}{4}\right]^{3 / 2}}{\frac{\sqrt{2}}{2}}=\frac{2\left[\frac{3}{2}\right]^{3 / 2}}{\sqrt{2}} \\
& =\frac{2 \frac{3 \sqrt{3}}{2 \sqrt{2}}}{\sqrt{2}}=\frac{3 \sqrt{3}}{2}
\end{align*}
$$

|M1A1

A10-ID: 750

$$
\begin{array}{rlrl}
\frac{d y}{d x} & =\frac{2 x}{1+\left(x^{2}\right)^{2}}=\frac{2}{2} \text { at } x=1 & & \text { |M 1A1 } \\
\frac{d^{2} y}{d x^{2}} & =\frac{\left(1+x^{4}\right) 2-2 x \cdot 4 x^{3}}{\left(1+x^{4}\right)^{2}}=\frac{2-6 x^{4}}{\left(1+x^{4}\right)^{2}} & & \text { |M 1A1 } \\
& =\frac{-4}{4} \text { at } x=1 & {\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}} & \frac{\left[1+\left(\frac{2}{2}\right)^{2}\right]^{3 / 2}}{\frac{-4}{4}} \\
\rho & =\frac{d^{2} y}{d x^{2}} & \text { |M 1 } \\
& =\frac{4}{-4}\left[1+\frac{4}{4}\right]^{3 / 2}=-\frac{4}{4}\left[\frac{8}{4}\right]^{3 / 2} & \mid A 1
\end{array}
$$

(a) $x=\ln k \Rightarrow e^{x}=k$

$$
\begin{aligned}
\cosh 5 x & =\frac{e^{5 x}+e^{-5 x}}{2}=\frac{k^{5}+k^{-5}}{2} & & \mid M 1 \\
& =\frac{k^{10}+1}{2 k^{5}} & & \mid M 1 A 1 \\
f^{\prime}(x) & =p-5 \operatorname{sech}^{2} 5 x=0 & & \mid M 1 A 1 \\
& \Rightarrow p=\frac{5}{\cosh ^{2} 5 x} & & \\
x=\ln 2 & \Rightarrow \cosh 5 x=\frac{1025}{64} & & \mid B 1 \\
& \Rightarrow p=5 \times \frac{4096}{1050625}=\frac{20480}{1050625} & & \mid A 1
\end{aligned}
$$

(b)

A12-ID: 438
(a) $\quad \frac{d y}{d x}=-1+64 \operatorname{sech}^{2} 64 x$

$$
\begin{align*}
\frac{d y}{d x}=0 & \Rightarrow-1+64 \operatorname{sech}^{2} 64 x=0 \Rightarrow \cosh ^{2} 64 x=64 \\
& \Rightarrow \cosh 64 x=8 \\
& \Rightarrow 64 x=\cosh ^{-1} 8=\ln (8 \pm \sqrt{63} \\
& \Rightarrow x=\frac{1}{64} \ln (8+\sqrt{63})
\end{align*}
$$

(b) $\tanh ^{2} 64 x=1-\operatorname{sech}^{2} 64 x=1-\frac{1}{64}=\frac{63}{64}$

$$
\begin{array}{ll}
\Rightarrow \tanh 64 x=\frac{\sqrt{63}}{8} & \text { IM } 1 \\
\Rightarrow y=-\frac{1}{64} \ln (8+\sqrt{63})+\tanh 64 x & \text { IM } 1 \\
\Rightarrow y=\frac{\sqrt{63}}{8}-\frac{1}{64} \ln (8+\sqrt{63}) & \text { IA1 }
\end{array}
$$

A13-ID: 516

$$
\begin{aligned}
y=\arctan 5 x & \Rightarrow \tan y=5 x \\
& \Rightarrow \sec ^{2} y \frac{d y}{d x}=5 \\
& \Rightarrow \frac{d y}{d x}=\frac{5}{\sec ^{2} y}=\frac{5}{1+\tan ^{2} y}=\frac{5}{1+25 x^{2}}
\end{aligned}
$$

$$
\text { |M } 1
$$

$$
\mid A 1
$$

|M1A1

A14-ID: 2605
(a) $y=\arccos 2 x \Rightarrow \cos y=2 x$

$$
\begin{align*}
& \Rightarrow-\sin y \frac{d y}{d x}=2 \\
& \Rightarrow \frac{d y}{d x}=-\frac{2}{\sin y}=-\frac{2}{\sqrt{1-\cos ^{2} y}}=-\frac{2}{\sqrt{1-4 x^{2}}}
\end{align*}
$$

(b)

$$
\begin{aligned}
f^{\prime}(x) & =-2\left(1-4 x^{2}\right)^{-\frac{1}{2}} \\
& =-2\left(1+2 x^{2}+6 x^{4}+\ldots\right) \\
f(x) & =C-2 x-\frac{4}{3} x^{3}-\frac{12}{5} x^{5}+\ldots \\
x=0 & \Rightarrow C=\frac{\pi}{2} \\
& \Rightarrow f(x)=\frac{\pi}{2}-2 x-\frac{4}{3} x^{3}-\frac{12}{5} x^{5}+\ldots
\end{aligned}
$$

|M1

A15-ID: 5305
[4 marks, 5 minutes]

$$
\begin{align*}
f^{\prime}(x) & =\frac{1}{\sqrt{1-x^{2}}}-9 x^{\frac{1}{2}} \\
f^{\prime}(x)=0 & \Rightarrow \frac{1}{\sqrt{1-x^{2}}}-9 x^{\frac{1}{2}}=0 \\
& \Rightarrow 1=9 x^{\frac{1}{2}} \sqrt{1-x^{2}} \\
& \Rightarrow 1=81 x\left(1-x^{2}\right) \\
& \Rightarrow 1=81 x-81 x^{3} \\
& \Rightarrow 81 x^{3}-81 x+1=0
\end{align*}
$$

A16-ID: 5987

$$
\frac{d y}{d x}=\frac{1}{1+(x-6)^{2}}
$$

gradient of normal $-2 \rightarrow$ gradient of tangent $=\frac{1}{2}$

$$
\begin{align*}
& \Rightarrow \frac{1}{1+(x-6)^{2}}=\frac{1}{2} \\
& \Rightarrow 1+(x-6)^{2}=2 \\
& \Rightarrow(x-6)^{2}=1 \Rightarrow x=7 \\
& \Rightarrow y=\frac{\pi}{4} \\
& \Rightarrow \frac{\pi}{4}=-14+c \\
& \Rightarrow c=\frac{\pi}{4}--14
\end{align*}
$$

A17-ID: 473
[7 marks, 8 minutes]

$$
\begin{align*}
\frac{\mathrm{dx}}{\mathrm{dt}} & =-15 \cos ^{2} \mathrm{t} \sin \mathrm{t}, \quad \frac{\mathrm{dy}}{\mathrm{dt}}=15 \sin ^{2} \mathrm{t} \cos \mathrm{t} \\
\text { area } & =2 \pi \int \mathrm{y} \sqrt{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)^{2}+\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)^{2}} \mathrm{dx} \\
& =2 \pi \int 5 \sin ^{3} \mathrm{t} \sqrt{225 \cos ^{4} \mathrm{t} \sin ^{2} \mathrm{t}+225 \sin ^{4} \mathrm{t} \cos ^{2}} \mathrm{tdx} \\
& =150 \pi \int \sin ^{4} \mathrm{t} \cos \mathrm{t} \sqrt{\cos ^{2} \mathrm{t}+\sin ^{2}} \mathrm{tdx}=\left[150 \pi \frac{1}{5} \sin ^{5} \mathrm{t}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{150 \pi}{5}
\end{align*}
$$

|A1

A18-ID: 794
(a) $\int \frac{3+x}{\sqrt{1-16 x^{2}}} d x=\int \frac{3}{\sqrt{1-16 x^{2}}} d x+\int \frac{x}{\sqrt{1-16 x^{2}}} d x$ $=\frac{3}{4} \sinh ^{-1} 4 x+\int \frac{x}{\sqrt{1-16 x^{2}}} d x$ $=\frac{3}{4} \sinh ^{-1} 4 x-\frac{2}{32} \sqrt{1-16 x^{2}}+c$
(b) $\int_{0}^{0.2} \frac{3+x}{\sqrt{1-16 x^{2}}} d x=\left(\frac{3}{4} \sinh ^{-1} 0.8-\frac{2}{32} \sqrt{0.36}\right)-\left(-\frac{2}{32}\right)$

$$
=0.575
$$

$$
\begin{align*}
\int_{2}^{6} \frac{1}{\sqrt{x^{2}-4 x+20}} d & =\int_{2}^{6} \frac{1}{\sqrt{(x-2)^{2}+16}} d x \\
& =\left[\sinh ^{-1} \frac{x-2}{4}\right]_{2}^{6} \\
& =\sinh ^{-1} \frac{4}{4} \\
& =\ln \left(\frac{4}{4}+\sqrt{\frac{16}{16}+1}\right) \\
& =\ln \left(\frac{4+\sqrt{32}}{4}\right)
\end{align*}
$$

A20-ID: 1747

$$
\begin{array}{rlrl}
\int_{1}^{3} \frac{1}{\sqrt{x^{2}+4 x+8}} & d & \int_{1}^{3} \frac{1}{\sqrt{(x+2)^{2}+} 4} d x & \\
& =\left[\sinh ^{-1} \frac{x+2}{2}\right]_{1}^{3} & & \\
& =\sinh ^{-1} 2.5-\sinh ^{-1} 1.5 & \\
& =\ln (2.5+\sqrt{7.25})-\ln (1.5+\sqrt{3.25}) & & \mid \mathrm{A} 1 \\
& =\ln \binom{2.5+\sqrt{7.25}}{1.5+\sqrt{3.25}} & \mid A 1
\end{array}
$$

A21-ID: 2607
[5 marks, 6 minutes]

$$
\begin{array}{rlrl}
\int_{0}^{2} \frac{1}{\sqrt{16 x^{2}+25}} & d & =\frac{1}{4} \int_{0}^{2} \frac{1}{\sqrt{x^{2}+\frac{25}{16}}} d x & \\
& =\left[\frac{1}{4} \sinh ^{-1} \frac{4 x}{5}\right]_{0}^{2} & \mid A 1 \\
& =\frac{1}{4} \sinh ^{-1} \frac{8}{5} & \mid \mathrm{A} 1 \\
& =\frac{1}{4} \ln \left(\frac{8}{5}+\sqrt{\frac{64}{25}+1}\right) & \mid \mathrm{M} 1 \\
& =\frac{1}{4} \ln \left(\frac{8}{5}+\sqrt{\frac{89}{25}}\right) & \mid \mathrm{A} 1
\end{array}
$$

A22-ID: 2608

$$
\begin{aligned}
\int_{-\ln 2}^{\ln 2}(22 \cosh x-4 \cosh 2 x) d & =\left[22 \sinh x-\frac{4}{2} \sinh 2 x\right]_{-\ln 2}^{\ln 2} \\
& =2\left[\frac{22}{2}\left(2-\frac{1}{2}\right)-\frac{4}{4}\left(4-\frac{1}{4}\right)\right] \\
& =2\left[\frac{66}{4}-\frac{60}{16}\right]=25.5
\end{aligned}
$$

$$
\begin{align*}
\int_{5}^{6} \frac{7+x}{\sqrt{x^{2}-9}} d & =\int_{5}^{6} \frac{7}{\sqrt{x^{2}-9}} d x+\int_{5}^{6} \frac{x}{\sqrt{x^{2}-9}} d x \\
& =\left[7 \cosh ^{-1} \frac{x}{3}+\sqrt{x^{2}-9}\right]_{5}^{6} \\
& =\left[7 \ln \left(\frac{x+\sqrt{x^{2}-9}}{3}\right)+\sqrt{x^{2}-9}\right]_{5}^{6} \\
& =\left(7 \ln \left(\frac{6+\sqrt{6^{2}-9}}{3}\right)+\sqrt{6^{2}-9}\right)- \\
& \left(7 \ln \left(\frac{5+\sqrt{5^{2}-9}}{3}\right)+\sqrt{5^{2}-9}\right) \\
& =7 \ln \left(\frac{6+\sqrt{27}}{3}\right)+\sqrt{27}-7 \ln \left(\frac{5+\sqrt{16}}{3}\right)-\sqrt{16} \\
= & 7 \ln \left(\frac{6+\sqrt{27}}{5+\sqrt{16}}\right)+\sqrt{27}-\sqrt{16}
\end{align*}
$$

|M1A2

A24 - ID: 4700
(a)

$$
y=\cosh ^{-1} 8 x \Rightarrow \cosh y=8 x
$$

$$
\begin{align*}
& \Rightarrow \sinh y \frac{d y}{d x}=8 \\
& \Rightarrow \frac{d y}{d x}=\frac{8}{\sinh y} \\
& \Rightarrow \frac{d y}{d x}=\frac{8}{\sqrt{\cosh ^{2} y-1}} \\
& \Rightarrow \frac{d y}{d x}=\frac{8}{\sqrt{64 x^{2}-1}}
\end{align*}
$$

(b) $\quad \int \frac{1}{\sqrt{64 x^{2}-1}} d x=\frac{1}{8} \cosh ^{-1} 8 x$
|M1A1

A25 - ID: 545

(a) $y=\arctan 3 x \Rightarrow \tan y=3 x$

$$
\begin{aligned}
& \Rightarrow \sec ^{2} y \frac{d y}{d x}=3 \\
& \Rightarrow \frac{d y}{d x}=\frac{3}{\sec ^{2} y}=\frac{3}{1+\tan ^{2} y}=\frac{3}{1+9 x^{2}}
\end{aligned}
$$

(b) integral $=3 x^{2} \cdot \arctan 3 x-\int \frac{9 x^{2}}{1+9 x^{2}} d x$

$$
\begin{array}{ll}
=3 x^{2} \cdot \arctan 3 x-\int \frac{1+9 x^{2}-1}{1+9 x^{2}} d x & \mid \mathrm{M} 1 \\
=\left[3 x^{2} \arctan 3 x-x+\left.\frac{1}{3} \arctan 3 x\right|_{0} ^{\frac{\sqrt{3}}{3}}\right. & \mid \mathrm{A} 1 \\
=\frac{\pi}{3}-\frac{\sqrt{3}}{3}+\frac{\pi}{9} & \mathrm{\mid M} 1 \\
=\frac{1}{9}(4 \pi-3 \sqrt{3}) & \mathrm{\mid A} 1
\end{array}
$$

A26-ID: 2604
[4 marks, 5 minutes]

$$
\begin{align*}
\mathrm{x}=6 \sin \theta & \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{6}} \frac{1}{\left(36-36 \sin ^{2} \theta\right)^{\frac{3}{2}}}(6 \cos \theta) \mathrm{d} \theta \\
& =\int_{0}^{\frac{\mathrm{x}}{6}} \frac{6 \cos \theta}{216 \cos ^{3} \theta} \mathrm{~d} \theta \\
& =\int_{0}^{\frac{\pi}{6}} \frac{1}{36} \sec ^{2} \theta \mathrm{~d} \theta \\
& =\left[\frac{1}{36} \tan \theta\right]_{0}^{\frac{\pi}{6}} \\
& =\frac{1}{36} \times \frac{1}{\sqrt{3}}=\frac{1}{36 \sqrt{3}}
\end{align*}
$$

(a) $I_{n}=\frac{1}{5} x^{n} e^{5 x}-\frac{n}{5} \int x^{n-1} e^{5 x} d x=\frac{1}{5}\left(x^{n} e^{5 x}-n I_{n-1}\right) \quad$ |M1A2
(b) $I_{2}=\left[\frac{1}{5} x^{2} e^{5 x}\right]_{0}^{1}-\frac{2}{5} I_{1}=\frac{1}{5} e^{5}-\frac{2}{5} I_{1}$
|M1

$$
I_{1}=\left[\frac{1}{5} x e^{5 x}\right]_{0}^{1}-\frac{1}{5} I_{0}=\frac{1}{5} e^{5}-\frac{1}{5} I_{0}
$$

$$
I_{0}=\int e^{5 x} d x=\left[\frac{1}{5} e^{5 x}\right]_{0}^{1}=\frac{1}{5} e^{5}-\frac{1}{5}
$$

$$
\Rightarrow I_{2}=\frac{1}{5} e^{5}-\frac{2}{5}\left(\frac{1}{5} e^{5}-\frac{1}{5}\left(\frac{1}{5} e^{5}-\frac{1}{5}\right)\right)
$$

$$
=\frac{1}{5} e^{5}-\frac{2}{25} e^{5}+\frac{2}{125} e^{5}-\frac{2}{125}=\frac{17}{125} e^{5}-\frac{2}{125}
$$

|A1
(a) vector equation: $\left(r-\left(\begin{array}{c}-3 \\ 0 \\ 0\end{array}\right)\right) \times\left(\begin{array}{c}-3 \\ 3 \\ 4\end{array}\right)=0$
(b) cartesian equation: $\frac{x--3}{-3}=\frac{y-0}{3}=\frac{z-0}{4}$
(c) $\sqrt{-3^{2}+3^{2}+4^{2}}=\sqrt{34}$
direction cosines: $\frac{-3}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac{3}{\sqrt{34}}$
: cosines of the angles between the line and the x, y and z - axes respectively

|B1

|M1A1
|B1
|B1
|B1

A29-ID: 5988

```
\(|a \times b|=|a||b| \sin \theta\)
\(|a \times b|^{2}=|a|^{2}|b|^{2} \sin ^{2} \theta \quad \mid M 1 A 1\)
    \(=|a|^{2}|b|^{2}\left(1-\cos ^{2} \theta\right) \quad \mid A 1\)
    \(=|a|^{2}|b|^{2}-|a|^{2}|b|^{2} \cos ^{2} \theta \quad \mid A 1\)
    \(=|a|^{2}|b|^{2}-(|a||b| \cos \theta)^{2} \quad \mid A 1\)
    \(=|a|^{2}|b|^{2}-(a \cdot b)^{2} \quad \mid A 1\)
```

A30-ID: 854
(a) \quad vector $=(4 i+4 j+2 k) \times(3 i+3 j+1 k)$

$$
=(4-6) i-(4-6) j+(12-12) k=-2 i+2 j-0 k
$$

(b)

$$
d=-2 x+2 y-0 z
$$

$$
=-2(1)+2(3)-0(3)=4
$$

(c)

$$
4=-2(3)+2 p-0(3)
$$

$$
\Rightarrow p=5
$$

(d) direction, $b=(-2 i+2 j-0 k) \times(2 i+5 j+1 k)$

$$
=2 i+2 j+-14 k
$$

point, $x=1 \Rightarrow-2+2 y-0 z=4 \Rightarrow 2 y-0 z=6$

$$
\Rightarrow 2+5 y+1 z=2 \Rightarrow 5 y+1 z=0
$$

$$
\Rightarrow y=3, z=-15
$$

equation : $[r-(1 i+3 j+-15 k)] \times(2 i+2 j+-14 k)=1$
normal vectors $=\left(\begin{array}{c}2 \\ 6 \\ 10\end{array}\right), \quad\left(\begin{array}{c}4 \\ -8 \\ 4\end{array}\right)$

$$
\begin{aligned}
\left(\begin{array}{c}
2 \\
6 \\
10
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
8 \\
4
\end{array}\right) & =8-48+40=0 \\
& \Rightarrow \text { planes are perpendicular }
\end{aligned}
$$

(a) $\quad \begin{aligned} n & =\operatorname{det}\left(\begin{array}{ccc}i & j & k \\ 10 & 4 & 6 \\ 8 & 6 & 6\end{array}\right)=-12 i-12 j+28 k \\ d & =\left(\begin{array}{c}2 \\ 5 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}-12 \\ -12 \\ 28\end{array}\right)=-24-60+84=0\end{aligned}$
(b) $\quad \mathrm{d}=0 \Rightarrow$ plane passes through origin

A33-ID: 5747
(a)

$$
\overrightarrow{\mathrm{CD}}=\left(\begin{array}{c}
-12 \\
9 \\
18
\end{array}\right), \quad \overrightarrow{\mathrm{CB}}=\left(\begin{array}{c}
0 \\
30 \\
0
\end{array}\right)
$$

(b) $\quad C D=\sqrt{-12^{2}+9^{2}+18^{2}}=\sqrt{549}$
|M1A1
(c) $\left(\begin{array}{c}1.5 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-12 \\ 9 \\ 18\end{array}\right)=0,\left(\begin{array}{c}1.5 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 30 \\ 0\end{array}\right)=0$

$$
\text { equation: } 1.5 x+z=c
$$

|M1A1
(e)

$$
\begin{align*}
& \mathrm{OG}:\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
6 \\
9 \\
18
\end{array}\right) \tag{BI}\\
& \mathrm{AF}:\left(\begin{array}{c}
0 \\
30 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
6 \\
-9 \\
18
\end{array}\right) \tag{B 1}
\end{align*}
$$

|M1A1
|M1A1

B 1
(d)

$$
C(30,0,0) \Rightarrow 1.5 x+z=45
$$

(f) $\quad \mathrm{P}$ on $\mathrm{OG} \Rightarrow \lambda=\frac{5}{3} \Rightarrow 9 \lambda=15 \Rightarrow 18 \lambda=30$

$$
\mathrm{P} \text { on } \mathrm{AF} \Rightarrow \mu=\frac{5}{3} \Rightarrow 30+-9 \mu=15 \Rightarrow 18 \mu=
$$

(g)

$$
\text { POABC }=\frac{1}{3} \times 30 \times 30 \times 30=9000
$$

[14 marks, 17 minutes]
A34-ID: 5975
(a) $\quad \overrightarrow{A B}=\left(\begin{array}{l}1-1 \\ 3-1 \\ 5-4\end{array}\right)=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right), \quad \overrightarrow{A C}=\left(\begin{array}{l}4-1 \\ 0-1 \\ 1-4\end{array}\right)=\left(\begin{array}{c}3 \\ -1 \\ -3\end{array}\right)$

$$
\overrightarrow{A B}=\left(\begin{array}{l}
1-1 \\
3-1 \\
5-4
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \quad \overrightarrow{A C}=\left(\begin{array}{l}
4-1 \\
0-1 \\
1-4
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
-3
\end{array}\right)
$$

$$
\text { PDEFG }=\frac{1}{3} \times 12 \times 12 \times 12=576
$$

$$
\text { volume }=8424 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
i & j & k \\
0 & 2 & 1 \\
3 & -1 & -3
\end{array}\right|=i(-5)-j(-3)+k(-6) \\
& =-5 i--3 j-6 k
\end{aligned}
$$

$$
\text { area }=\frac{1}{2}|-5 i--3 j-6 k|=\frac{\sqrt{70}}{2}
$$

(b)

$$
A B=\sqrt{5}
$$

|M1A2
|M1A1
|A1
|M1A1
(c)

$$
\frac{\sqrt{70}}{2}=\frac{1}{2} \sqrt{5} h \Rightarrow h=\sqrt{14}
$$

II : $r \cdot\left(\begin{array}{c}-5 \\ 3 \\ -6\end{array}\right)=d$
$i+j+4 k$ in plane $\rightarrow\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}-5 \\ 3 \\ -6\end{array}\right)=-26 \Rightarrow-5 x--3 y-6 z=-26$
(a) equation of $O D: r=\lambda\left(\begin{array}{c}7 \\ -4 \\ 6\end{array}\right)$
meets Π whert: $7(7 \lambda)+-4(-4 \lambda)+6(6 \lambda)=-5$

$$
\Rightarrow \lambda=-\frac{5}{101}
$$

$$
\Rightarrow \mathrm{D}\left(-\frac{35}{101}, \frac{20}{101},-\frac{30}{101}\right)
$$

(b)

$$
O D=\sqrt{\left(-\frac{35}{101}\right)^{2}+\left(\frac{20}{101}\right)^{2}+\left(-\frac{30}{101}\right)^{2}}=\sqrt{\frac{25}{101}}
$$

|M1A1

$$
\text { let } \begin{aligned}
\mathrm{t}=-2 & \Rightarrow(-2,2,1) \text { is a point on } \mathrm{L} \\
r & =\left(\begin{array}{l}
2 \\
4 \\
7
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
1 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-4 \\
4 \\
-4
\end{array}\right) \\
& \Rightarrow x=2+2 \lambda+-4 \mu \\
& \Rightarrow y=4+\lambda+4 \mu \\
& \Rightarrow z=7+3 \lambda+-4 \mu \\
& \Rightarrow x+y=6+3 \lambda \\
& \Rightarrow y+z=11+4 \lambda \\
& \Rightarrow 4(x+y)=24+12 \lambda \\
& \Rightarrow 3(y+z)=33+12 \lambda \\
& \Rightarrow 4 x+1 y-3 z=-9
\end{aligned}
$$

$$
\begin{align*}
\cos \theta & =\frac{a \cdot b}{|a||\mathrm{b}|} \\
& =\frac{\left(\begin{array}{c}
6 \\
3 \\
-2
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right)}{\sqrt{6^{2}+3^{2}+-2^{2} \sqrt{1+4^{2}+3^{2}}}=\frac{12}{\sqrt{49} \sqrt{26}} \quad \mathrm{MM} 1 /} \\
& \Rightarrow \theta=70.4 \\
& \Rightarrow \text { angle }=19.6^{\circ}
\end{align*}
$$

A38-ID: 7448

$$
\begin{aligned}
\mathrm{n}_{1} & =\left(\begin{array}{c}
5 \\
-8 \\
2 \\
5 \\
-8 \\
2
\end{array}\right) \times\left(\begin{array}{c}
10 \\
4 \\
-6
\end{array}\right)=\left(\begin{array}{c}
10 \\
4 \\
-6
\end{array}\right) \\
\mathrm{n}_{1} \times \mathrm{n}_{2} & =\left(\begin{array}{c}
40 \\
50 \\
100
\end{array}\right) \\
x=1 & \Rightarrow-8 y+2 z=-1, \quad 4 y+-6 z=-9 \\
& \Rightarrow y=0.6 z=1.9 \\
\mathrm{I} & : r=\left(\begin{array}{c}
1 \\
0.6 \\
1.9
\end{array}\right)+\lambda\left(\begin{array}{c}
40 \\
50 \\
100
\end{array}\right)
\end{aligned}
$$

(a) normal to $7 x-y+z=3=\left(\begin{array}{c}7 \\ -1 \\ 1\end{array}\right)$ normal to $x-z=4=\left(\begin{array}{c}1 \\ -0 \\ -1\end{array}\right)$
(b)

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{6}{\sqrt{51} \sqrt{2}}
$$

$$
\Rightarrow \theta=53.6
$$

(c)
equation: $r=\left(\begin{array}{l}3 \\ 1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}7 \\ -1 \\ 1\end{array}\right)$
(d)

$$
\begin{aligned}
\text { equation } & \\
& r=\left(\begin{array}{c}
3+7 \lambda \\
1-\lambda \\
3+\lambda
\end{array}\right) \\
& \Rightarrow 7(3+7 \lambda)-(1-\lambda)+(3+\lambda)=3 \\
& \Rightarrow 23+51 \lambda=3 \Rightarrow 51 \lambda=-20 \\
& \Rightarrow \lambda=-\frac{20}{51} \\
& \Rightarrow \text { intersection }=\left(\frac{13}{51}, \frac{71}{51}, \frac{133}{51}\right)
\end{aligned}
$$

|M 1A1
(a)

$$
\text { (a) } \begin{aligned}
\overrightarrow{A B} & =2 i+-2 j+2 k \\
\overrightarrow{A C} & =3 i+3 j+-1 k_{n} \overrightarrow{A D}=4 i+0 j+-1 k \\
\overrightarrow{A B} \times \overrightarrow{A C} & =(2-6) i+(6--2) j+(6--6) k \\
& =-4 i+8 j+12 k \\
\text { Area } A B C & =\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{16+64+144}=\frac{1}{2} \sqrt{224} \\
\text { (b) } \quad \text { (c) } & =\frac{1}{6}|\overrightarrow{A D} \cdot \overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{6}|-16+0+-12|=\frac{28}{6} \\
\text { (c) } \quad \text { Unit vector, } n & =\frac{1}{\sqrt{224}}(-4 i+8 j+12 k) \\
p & =|n \cdot \overrightarrow{A D}|=\frac{1}{\sqrt{224}}|(-4 i+8 j+12 k) .(4 i+0 j+-1 k)| \\
& =\frac{1}{\sqrt{224}}(-16+0+-12)=\frac{28}{\sqrt{224}}
\end{aligned}
$$

IM 1A1

IM 1A2
IM 1A1
IM 1A1
|M1

IM 1A1

A41-ID: 379
[18 marks, 22 minutes]
(a)

$$
\text { (a) } \begin{align*}
& \overrightarrow{\mathrm{AB}}=4 i+1 j+1 k_{夕} \overrightarrow{A C}=2 i+0 j+-1 k \\
& \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=(-1-0) i+(2--4) j+(0-2) k \\
&=-1 i+6 j+-2 k \\
& r=3 i+5 j+3 k+\lambda(-1 i+6 j+-2 k) \\
& \text { (b) } \quad \begin{array}{l}
\overrightarrow{A D} \\
\\
\text { Vol }
\end{array}=4 i+3 j+1 k \\
& \left.=\frac{1}{6}|\overrightarrow{A D} \overrightarrow{A B} \times \overrightarrow{A C}|-4+18+-2 \right\rvert\,=\frac{12}{6}
\end{align*}
$$

|M 1A1
|B1
(c) equation : r. $(-1 i+6 j+-2 k)=(1 i+2 j+1 k) .(-1 i+6 j+-2 k)$

$$
\text { (d) } \quad:[(3+-1 \lambda) i+(5+6 \lambda) j+(3+-2 \lambda) k] \cdot(-1 i+6 j+-2 k)=9
$$

$\Rightarrow-3+1 \lambda+30+36 \lambda+-6+4 \lambda=9$
$\Rightarrow 21+41 \lambda=9 \quad \Rightarrow \lambda=\frac{-12}{41}$
$\Rightarrow E$ is at $\left(\frac{135}{41}, \frac{133}{41}, \frac{147}{41}\right)$
(e)
$D E=\frac{-12}{41}|-1 i+6 j+-2 k|=\frac{12}{41} \sqrt{41}$
(f) At F, $\lambda=2 \times \frac{-12}{41}=\frac{-24}{41}$
|B1

$$
\Rightarrow \mathrm{F} \text { is at }\left(\frac{147}{41}, \frac{61}{41}, \frac{171}{41}\right)
$$

|M1A1

A42-ID: 587
[5 marks, 6 minutes]

$$
\begin{aligned}
\operatorname{det} & =2\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|-2\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|+3\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right| \\
& =2(8)-2(1)+3(-5)=-1 \\
\text { cofactors } & =\left(\begin{array}{ccc}
8 & -1 & -5 \\
-3 & 0 & 2 \\
-7 & 1 & 4 \\
8 & -3 & -7 \\
-1 & 0 & 1 \\
-5 & 2 & 4
\end{array}\right) \\
\text { transpose } & =\left(\begin{array}{ccc}
8 & -3 & -7 \\
-1 & 0 & 1 \\
-5 & 2 & 4
\end{array}\right)
\end{aligned}
$$

A43-ID: 2076
(a) $\quad \operatorname{det}=k\left|\begin{array}{ll}0 & k \\ 4 & 2\end{array}\right|-2\left|\begin{array}{ll}0 & k \\ 7 & 2\end{array}\right|+-5\left|\begin{array}{ll}0 & 0 \\ 7 & 4\end{array}\right|$

$$
=\mathrm{k}(0-4 \mathrm{k})-2(0-7 \mathrm{k})+0
$$

$$
=-4 k^{2}+14 \mathrm{k}+0=-(4 \mathrm{k}-14)(\mathrm{k}-0)
$$

$$
\operatorname{det}=0 \Rightarrow k=0,3.5
$$

(b) cofactors $=\left(\begin{array}{ccc}0-4 k & 7 k-0 & 0 \\ -24 & 2 k--35 & 14-4 k \\ 2 k-0 & 0-k^{2} & 0 k-0\end{array}\right)$

$$
A^{-1}=\frac{1}{\operatorname{det}}\left(\begin{array}{ccc}
0-4 \mathrm{k} & -24 & 2 \mathrm{k}-0 \\
7 \mathrm{k}-0 & 2 \mathrm{k}--35 & 0-\mathrm{k}^{2} \\
0 & 14-4 \mathrm{k} & 0 \mathrm{k}-0
\end{array}\right)
$$

A44-ID: 5450
(a) $\quad \mathrm{AB}=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 1 & 0 \\ 0 & 3 & 1\end{array}\right) \times\left(\begin{array}{ccc}1 & 1 & -1 \\ -2 & 3 & 2 \\ 6 & -9 & -1\end{array}\right)$

$$
=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

(b) $A B=51 \Rightarrow \frac{1}{5} A B=1 \Rightarrow A \times \frac{1}{5} B=1$

$$
\Rightarrow A^{-1}=\frac{1}{5} B=\frac{1}{5}\left(\begin{array}{ccc}
1 & 1 & -1 \\
-2 & 3 & 2 \\
6 & -9 & -1
\end{array}\right)
$$

A45-ID: 5406
(a)

$$
\begin{aligned}
\operatorname{det} & =a\left|\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right|-2\left|\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right|+3\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right| \\
& =a(0)-2(0)+3(1)=3
\end{aligned}
$$

(b) cofactors $=\left(\begin{array}{ccc}0 & 0 & 1 \\ 6 & -3 & 2-2 a \\ -3 & 3 & 1 a-2\end{array}\right)$
transpose $=\left(\begin{array}{ccc}0 & 6 & -3 \\ 0 & -3 & 3 \\ 1 & 2-2 a & 1 a-2\end{array}\right)$

$$
\text { inverse }=\frac{1}{3}\left(\begin{array}{ccc}
0 & 6 & -3 \\
0 & -3 & 3 \\
1 & 2-2 a & 1 a-2
\end{array}\right)
$$

|M1A1
|M1A1
|M1A1
(c) $\quad B^{-1}=(A B)^{-1} \times A=\frac{1}{3}\left(\begin{array}{ccc}0 & 6 & -3 \\ 0 & -3 & 3 \\ 1 & 2-2 a & 1 a-2\end{array}\right) \times\left(\begin{array}{ccc}a & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 2 & 4\end{array}\right)$

$$
=\frac{1}{3}\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 6 \\
0 & 0 & -1
\end{array}\right)
$$

$$
\begin{align*}
\operatorname{det} & =a\left|\begin{array}{cc}
a & 1 \\
-3 & a
\end{array}\right|-3 a\left|\begin{array}{cc}
0 & 1 \\
-3 & a
\end{array}\right|+0\left|\begin{array}{cc}
0 & a \\
-3 & -3
\end{array}\right| \\
& =a\left(a^{2}--3\right)-3 a(3) \\
& =a\left(a^{2}-6\right) \\
\text { singular } & \Rightarrow a=0, \pm \sqrt{6}
\end{align*}
$$

jM 1A1

A47-ID: 5866
matrix equation: $\left(\begin{array}{ccc}6 & -1 & 1 \\ 0 & 5 & 1 \\ 1 & k & k\end{array}\right) \times\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}6 \\ 5 \\ 6\end{array}\right)$
no unique solution \Rightarrow det $=0$

$$
\begin{align*}
& \Rightarrow 6\left|\begin{array}{cc}
5 & 1 \\
k & k
\end{array}\right|+\left|\begin{array}{ll}
0 & 1 \\
1 & k
\end{array}\right|+\left|\begin{array}{ll}
0 & 5 \\
1 & k
\end{array}\right|=0 \\
& \Rightarrow 24 k-1-5=0 \\
& \Rightarrow 24 k=6 \\
& \Rightarrow k=\frac{1}{4}
\end{align*}
$$

|M1A1

A48-ID: 357
[10 marks, 12 minutes]
(a) $\quad|A-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}7-\lambda & 4 \\ 10 & 1-\lambda\end{array}\right|=0$

$$
\begin{align*}
& \Rightarrow(7-\lambda)(1-\lambda)-40=0 \\
& \Rightarrow \lambda^{2}-8 \lambda+7-40=0 \Rightarrow \lambda^{2}-8 \lambda-33=0 \\
& \Rightarrow(\lambda-11)(\lambda+3)=0 \Rightarrow \lambda=11,-3
\end{align*}
$$

|M1A1
(b) $\quad \lambda=11 \Rightarrow\left(\begin{array}{cc}7-11 & 4 \\ 10 & 1-11\end{array}\right)\binom{x_{1}}{y_{1}}=0$

$$
\Rightarrow-4 x_{1}+4 y_{1}=0
$$

|M1A1
Normalized: $\frac{1}{\sqrt{32}}\binom{4}{4}$
|M 1A1

$$
\begin{align*}
\lambda=-3 & \Rightarrow\left(\begin{array}{cc}
7--3 & 4 \\
10 & 1--3
\end{array}\right)\binom{x_{2}}{y_{2}}=0 \\
& \Rightarrow 10 x_{2}+4 y_{2}=0
\end{align*}
$$

Normalized: $\frac{1}{\sqrt{116}}\binom{4}{-10}$

A49-ID: 858
(a) $\left(\begin{array}{lll}1 & 0 & 4 \\ 0 & 5 & 4 \\ 4 & 4 & 3\end{array}\right)\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}6 \\ -6 \\ 3\end{array}\right)=3\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right) \Rightarrow \lambda=3$
|M1A2
(b)

$$
\begin{align*}
|A-\lambda| \mid & =\left|\begin{array}{ccc}
1-\lambda & 0 & 4 \\
0 & 5-\lambda & 4 \\
4 & 4 & 3-\lambda
\end{array}\right| \\
& =(1-\lambda)((5-\lambda)(3-\lambda)-16)+4(0-4(5-\lambda)) \\
& =(3-\lambda)(\lambda-9)(3+\lambda) \\
|A-\lambda I|=0 & \Rightarrow \lambda=9
\end{align*}
$$

$$
\text { eigenvector } \Rightarrow 1 x+0 y+4 z=9 x
$$

$$
\Rightarrow 0 x+5 y+4 z=9 y
$$

$$
4 x+4 y+3 z=9 z
$$

IM 1

$$
\Rightarrow y=2 x, \quad z=2 x
$$

$$
\Rightarrow \text { eigenvector }\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

$1 A 2$

IM 1A1
|B1M 1A1
(a) $\quad \operatorname{det}=6\left|\begin{array}{ll}2 & 2 \\ 2 & k\end{array}\right|-2\left|\begin{array}{ll}2 & 2 \\ 2 & k\end{array}\right|+2\left|\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right|$

$$
=6(0)-2(2 k-4)+2(0)=8-4 k
$$

(b) cofactors $=\left(\begin{array}{ccc}0 & 4-2 k & 0 \\ 4-2 \mathrm{k} & 6 \mathrm{k}-4 & -8 \\ 0 & -8 & 8\end{array}\right)$
|M1A1
|M 1A3
|M 1A1
|M1A1
(a) $\left.|A-\lambda||=0 \Rightarrow| \begin{array}{cc}3-\lambda & -4 \\ 0 & 5-\lambda\end{array} \right\rvert\,=0$

$$
\begin{array}{ll}
\Rightarrow(3-\lambda)(5-\lambda)-0=0 & \text { |M } 1 \\
\Rightarrow \lambda^{2}-8 \lambda+15-0=0 \Rightarrow \lambda^{2}-8 \lambda+15=0 & \mid \mathrm{M} 1 \\
\Rightarrow(\lambda-5)(\lambda-3)=0 \Rightarrow \lambda_{1}=5, \lambda_{2}=3 & \text { |A1 }
\end{array}
$$

(b) $\quad M^{-1}=\frac{1}{15}\left(\begin{array}{ll}5 & 4 \\ 0 & 3\end{array}\right)$
(c) $\quad\left|M^{-1}-\lambda_{1}^{-1}\right|\left|=\left|\begin{array}{cc}\frac{5}{15}-\frac{1}{5} & \frac{4}{15} \\ \frac{0}{15} & \frac{3}{15}-\frac{1}{5} \\ \frac{5}{15}-\frac{1}{3} & \frac{4}{15} \\ \frac{0}{15} & \frac{3}{15}-\frac{1}{3}\end{array}\right|=0\right.$
|M 1A1
|A1

A52-ID: 2075
[7 marks, 8 minutes]
(a) $\left.\quad|A-\lambda||=0 \Rightarrow| \begin{array}{cc}6-\lambda & 3 \\ 16 & -2-\lambda\end{array} \right\rvert\,=0$

$$
\begin{aligned}
& \Rightarrow(6-\lambda)(-2-\lambda)-48=0 \\
& \Rightarrow \lambda^{2}-4 \lambda+-12-48=0 \Rightarrow \lambda^{2}-4 \lambda-60=0 \\
& \Rightarrow(\lambda+-10)(\lambda--6)=0 \Rightarrow \lambda=10,-6
\end{aligned}
$$

(b) $y=m x$ invariant $\Rightarrow\left(\begin{array}{cc}6 & 3 \\ 16 & -2\end{array}\right) \times\binom{ x}{m x}=\binom{x^{\prime}}{m x^{\prime}}$

$$
\begin{aligned}
& \Rightarrow 6 x+3 m x=x^{\prime}, 16 x+-2 m x=m x^{\prime} \\
& \Rightarrow 16+-2 m \\
& \Rightarrow 3 m^{2}+3 m \\
& \Rightarrow(3 m-4)(m+4)=0 \\
& \Rightarrow m=\frac{4}{3},-4 \Rightarrow y=\frac{4}{3} x, y=-4 x
\end{aligned}
$$

A53-ID: 2077
(a) $\left(\begin{array}{ccc}2 & 3 & p \\ -3 & q & -3 \\ 4 & 4 & 4\end{array}\right) \times\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right)=\left(\begin{array}{c}6+-2 p \\ 6+2 q \\ 0\end{array}\right)$
(b)

$$
\begin{aligned}
6+-2 p & =0 \Rightarrow p=3 \\
6+2 q & =0 \Rightarrow q=-3
\end{aligned}
$$

lM 1
|A1
|M1A1
|M1A1
(a) $\quad|M-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}8-\lambda & 6 \\ -4 & -2-\lambda\end{array}\right|=0$

$$
\begin{align*}
& \Rightarrow(8-\lambda)(-2-\lambda)--24=0 \\
& \Rightarrow \lambda^{2}-6 \lambda+-16--24=0 \Rightarrow \lambda^{2}-6 \lambda+8=0 \\
& \Rightarrow(\lambda-2)(\lambda-4)=0 \Rightarrow \lambda=2,4 \\
\lambda=2 & \Rightarrow\left(\begin{array}{cc}
8-2 & 6 \\
-4 & -2-2
\end{array}\right)\binom{x_{1}}{y_{1}}=0 \\
& \Rightarrow 6 x_{1}+6 y_{1}=0
\end{align*}
$$

eigenvector: $\binom{-1}{1}$

$$
\begin{align*}
\lambda=4 & \Rightarrow\left(\begin{array}{cc}
8-4 & 6 \\
-4 & -2-4
\end{array}\right)\binom{x_{2}}{y_{2}}=0 \\
& \Rightarrow 4 x_{2}+6 y_{2}=0
\end{align*}
$$

eigenvector: $\binom{3}{-2}$
(b)

$$
P=\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right), \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)
$$

A55-ID: 5104
(a) $U=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right), \quad D=\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right)$

$$
U^{-1}=\left(\begin{array}{cc}
4 & -3 \\
-1 & 1
\end{array}\right)
$$

(b) $\quad T^{n}=U D^{n} U^{-1}=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right)\left(\begin{array}{cc}2^{n} & 0 \\ 0 & 2^{n}\end{array}\right)\left(\begin{array}{cc}4 & -3 \\ -1 & 1\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
2^{n} & 3\left(2^{n}\right) \\
2^{n} & 4\left(2^{n}\right)
\end{array}\right)\left(\begin{array}{cc}
4 & -3 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{n} & 0 \\
0 & 2^{n}
\end{array}\right)=2^{n}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

|B2

A56-ID: 5105
(a) $\quad M^{-1}=\left(\begin{array}{ccc}2 & 2 & 2 \\ 1 & -3 & 8 \\ 4 & 6 & 2\end{array}\right)^{-1}=\frac{1}{-12}\left(\begin{array}{ccc}-54 & 8 & 22 \\ 30 & -4 & -14 \\ 18 & -4 & -8\end{array}\right)$
|M1A2

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=M^{-1}\left(\begin{array}{c}
-4 \\
5 \\
2
\end{array}\right)=\frac{1}{-12}\left(\begin{array}{c}
300 \\
-168 \\
-108
\end{array}\right)
$$

$$
\Rightarrow x=-25, y=14, z=9
$$

|M1A1
(b) $\quad \operatorname{det}\left(\begin{array}{ccc}2 & 2 & 2 \\ 1 & -3 & 8 \\ a & 6 & 2\end{array}\right)=-108-4+16 a+12--6 a$

$$
\operatorname{det}=0 \Rightarrow-100+22 a=0 \Rightarrow a=4.545
$$

|M2A1
|M3A1

