A LEVEL MATHEMATICS QUESTIONBANKS

INTEGRATION 2


1.
The finite region R is bounded by the curve y = sinx and the x-axis, where 0 < x < (.


a)
Find the area of R.
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b)
Find the volume generated when R is rotated through 360( about the x-axis.
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2.
Find


a)
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b)
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c)
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3.
a)
Evaluate 
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b)
Show that 
[image: image5.wmf]ò

p

p

3

6



 EMBED Equation.3  [image: image6.wmf](

)

q

-

q

2

cos

3

sec

2

 d
[image: image7.wmf]q

 =  
[image: image8.wmf]3

2






[5]

4.
a)
Show by integration that 
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b)
Hence obtain  
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 tan ( d( in the form  aln2, where a is a constant to be determined.





[4]

5.
a)
Show 
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b)
Using the identity cos(A – B) – cos(A + B) ( 2 sinA sinB, or otherwise, find:
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6.
a)
Find the area of the region bounded by the curve y = sin 2x, the x-axis and the lines x = 0 and x = 
[image: image17.wmf]3

p

.
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b)
The points P and Q lie on the curve y = sin 2x, and have x-coordinates 0 and 
[image: image18.wmf]3

p

 respectively. 



Find the area of the region bounded by the curve and the line PQ, giving your

          answer in an exact form.





[4]

7.
Determine the area of the finite region bounded by the curves y = sin x, y = cos x and the y-axis, 


giving your answer in terms of surds.
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8.
a)
Show 
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b)
Hence evaluate 
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9.
a)
Express  
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b)
Show that  
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 where A is a constant.
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10.
a)
Use integration by parts to show that 
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b)
Find the area of the region bounded by the curve y = ln 
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, the x-axis and the lines x = 2 and



x = 2e2, giving your answers in terms of e.
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c)
The line L passes through  (2e2, 2) and (20, 0). Find the area enclosed between by the 



curve y = ln
[image: image29.wmf](

)

2

x

 the line L and the x axis





[4]

11.
a)
y = 2t2lnt –  t2. Find 
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b)
Hence find  
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integers to be found.
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12.
a)
Given that 4
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 + 2x  =  5 and that y = 
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 when  x = 2, find y in terms of x
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b)
Determine the particular solution of   (
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13.
a)
Use integration to show that the general solution of the differential equation

2xy
[image: image40.wmf]dx

dy

 = y2 – 1                      (x > 0; y > 1)

           is y2 = Ax +1, where A is a constant.
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b)
The curve y2 = Ax + 1 passes through the point (1, 2). State the value of A.
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c)
Determine the area of the finite region bounded by the curve, the line y = 2 and the y-axis.
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14.In a chemical reaction, the rate at which the concentration (C) of a reactant decreases is proportional 


to its concentration.


a)
Explain why this leads to the differential equation  
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b)
Given that initially C = 2, find the solution to this differential equation, expressing it in the form C = f(t).
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c)
Given further that after 1 second, C = 
[image: image42.wmf]2

1

, show that k = ln 4.
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d)
After time t0, the concentration reaches a value C0. After time t1, the concentration reaches 
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Find t0 and t1 in terms of C0.
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e)
Write down and simplify an expression for the time taken for the concentration to decline 



from C0 to 
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C0, and show that this is independent of the value of C0.
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15.
Newton’s Law of Cooling states that the rate at which the temperature of a hot object decreases is directly proportional to the difference between its current temperature (() and the room temperature ((0).


a)
Express this information in a differential equation.
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b)
Show that this leads to the general solution: ln 
[image: image45.wmf]0
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c)
Given that ( > (0, and initially ( = 2(0, show that (  = (0 (1 + e-kt),  t 
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 0.
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d)
Sketch the graph of ( against t.
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e)
At time T, the temperature is 
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4

0

q

. Show that T = 
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16.  The sketch below shows the curve whose parametric equations are: 



x = Acos t           y = Bsin t           0 
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 t < 2
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a)
State the coordinates of points P and Q.
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b)
Show that at point Q,  t = 
[image: image51.wmf]2

p

, and find the value of  t at point P.
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c)
Show that the area of the region bounded by the curve is given by:





4AB
[image: image52.wmf]ò

p

2

0

2

t

sin

dt







[5]


d)
Hence find the area of the region bounded by the curve.
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17.
a)
Find  
[image: image53.wmf]ò

x

2

xe

dx.





[4]


b)
Using your answer to a) , find 
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The sketch shows the curve with equation y = (x2 – 3x +2)e2x.

[image: image92.wmf]

c)
Write down the coordinates of the points A, B and C at which the curve crosses the coordinate axes.
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d)
Find the area of the finite region bounded by the curve and the x-axis, giving your answer in terms of e.
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18.
a)
By using integration by parts twice, or otherwise, show that:
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x

sin

e

x

3

dx     = e3x (a sinx + b cos x) + C



where C is an arbitrary constant and the constants a and b are to be found.
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b)
Hence show that the area A enclosed between the curve y = e3xsinx, the lines x = 0 and x = 
[image: image56.wmf]2

p

 



and the x-axis is given by  A = 
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19.

I  =  
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a)
Evaluate this integral.
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b)
Using the substitution x = cos
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, show that this integral can be expressed in the form:
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c)
Deduce that sin(cos-1x) = 
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20.
a)
Find 
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Hence or otherwise, find:

     b)
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c)
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21.
Find:


a)
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b)
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c)
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d)
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22.
a)
Show that if y = (x + 1)e
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b)
Hence show that 
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c)
Points P and Q are on the curve y = (4x2 + 1)e
[image: image76.wmf]2
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, and have x coordinates 0 and 1 respectively.



i)
Find the y coordinates of P and Q.
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ii)
Find the finite area enclosed between the curve and the line PQ, giving your answers in terms of e.
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23.a)
Find 
[image: image77.wmf]ò
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b)
Hence evaluate 
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24.
The curve C1 has equation y = x
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The curve 
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has equation y = 18 –  x
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a)
On the same diagram, sketch the curves 
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 and C
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coordinate axes.
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b)
Find the points of intersection of the two curves.
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c)
The area enclosed between the curves is rotated through 
[image: image84.wmf]p

 radians about the y axis. 



Find the volume generated, giving your answer in terms of 
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25.
The curve C has equation y = 2ex. Points P and Q lie on the curve, and have x-coordinates ln3 and ln6 respectively.  The portion of the curve between P and Q is rotated through 2
[image: image86.wmf]p

 radians about the x-axis. 
Find the volume generated, giving your answer in terms of 
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26.  The diagram shows the line y = x – 6 and the curve y = 
[image: image88.wmf]x

.
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a)
Find the coordinates of the point of intersection of the line and the curve.
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The shaded region is rotated through 2 radians about the x-axis.


b)
Find the volume generated.
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