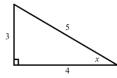
www.m4ths.com - Year 1 AS

Trigonometry (1)

(1) Using the triangle below, show that:

(a)
$$\frac{\sin x}{\cos x} = \tan x$$

(b) $\sin^2 x + \cos^2 x = 1$



(2) Simplify the following expressions:

(a)
$$\frac{\sin 3\theta}{\cos 3\theta}$$

(b)
$$4\sin^2 2x + 4\cos^2 2x$$

(c)
$$3 - 3\cos^2 5x$$

(d)
$$\frac{3\sin^2 4p}{\sin 4p\sqrt{1-\sin^2 4p}}$$

- (3) Show the expression $(\sin x + \cos x)^2 (\sin x \cos x)^2$ can be written as $k \sin x \cos x$ stating the value of k.
- (4) Prove the following identities:

(a)
$$\frac{\sin^2 x - \cos^2 x}{\sin x + \cos x} \equiv \sin x - \cos x$$

(b)
$$\frac{\sqrt{1-\cos^2 3x}}{\sqrt{1-\sin^2 3x}} = \tan 3x$$

(c)
$$\sin^4 x - \cos^4 x = 1 - 2\cos^2 x$$

(d)
$$\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{1}{\sin x \cos x}$$

- (5) Given $\sin A = \frac{3}{5}$ and that *A* is obtuse, find the values of:
- (a) $\cos A$
- (b) tan *A*
- (6) Given $x = 3\cos A$ and $y = 2\sin A$, write an equation connecting y and x.

Give all answers to 1 decimal place where appropriate.

(7) Solve the following equations in the interval $0 \le x \le 360^{\circ}$:

(a) $\sin x = 0.5$

(b)
$$\cos x = \frac{1}{\sqrt{2}}$$

(c) $\tan x = 1$

(d)
$$\cos x = \frac{\sqrt{3}}{2}$$

(e)
$$\sin x = -\frac{\sqrt{3}}{2}$$

(8) Solve the following equations in the interval $0 \le x \le 360^{\circ}$:

(a)
$$\sin x = \frac{\sqrt{3}}{2}$$

(b)
$$\tan x = \frac{1}{\sqrt{3}}$$

$$(c) \cos x = -\frac{1}{2}$$

- (d) $\tan x = -1$
- (9) Solve the following equations for $0 \le x \le 360^{\circ}$:
- (a) $\sin x = 0.24$
- (b) $\cos x = 0.83$
- (c) $3\tan x 1 = 2.12$
- (d) $4\sin x = -1.08$
- (10) Solve the following equations for $0 \le x \le 360^{\circ}$:
- (a) $\cos x = -0.54$
- (b) $\tan x = 3.7$
- (c) $1-\sin x = 0.43$
- (d) $2\cos x = \sin x$
- (11) Solve the following equations in the interval $-180^{\circ} \le x \le 180^{\circ}$:

(a)
$$\sin(x-30^\circ) = \frac{\sqrt{3}}{2}$$

(b)
$$\cos(x+45^{\circ}) = \frac{1}{2}$$

(c)
$$3\tan(x-15^\circ) = \sqrt{3}$$

(d)
$$2\sin(x+60^\circ) = \sqrt{2}$$

(12) Solve the following equations in the interval $0 \le x \le 360^{\circ}$:

(a)
$$2\cos(x+60) = \sqrt{3}$$

(b)
$$tan(x-45) = \frac{1}{\sqrt{3}}$$

(13) Solve the following equations for $0 \le x \le 180^{\circ}$.

$$(a) \sin(3x) = \frac{\sqrt{3}}{2}$$

(b)
$$\cos(2x) = 0.45$$

(c)
$$\sin(3x-20^\circ) = 0.3$$

(d)
$$\tan(2x+12^{\circ})=1.3$$

(14) Solve the following equations the interval $0 \le x \le 180^{\circ}$

(a)
$$\tan(3x-1.2^c) = 0.4$$

(b)
$$\sin(2x-0.2^c) = -0.12$$

(c)
$$2\cos(3x+0.65^c)=1.87$$

(15) Solve the following equations in the interval $0 \le x \le 360^{\circ}$:

(a) $2\sin x = \sin x \cos x$

(b)
$$\sin(2x-10^\circ) = \sin(50^\circ)$$

(c)
$$\tan(3\theta - 20^\circ) = \tan(30^\circ)$$

(16) Solve the following equations for $0 \le x \le 360^{\circ}$:

(a)
$$\sin^2 x = \frac{1}{2}$$

- (b) $\tan^2 2x = 1$
- (c) $2\sin^2 x \sin x = 1$

(d)
$$(\cos x - 1)(2\sin x - 1) = 0$$

(e)
$$4\sin^2 x - 4\cos x - 1 = 0$$

$$(f) \quad 2\cos\frac{1}{2}x = \tan\frac{1}{2}x$$

(17) Solve the following equations for $0 \le x \le 360^{\circ}$:

(a)
$$\cos^2 x - \sin(90 - x) = 2$$

(b)
$$3\tan^2 x + 5\tan x - 2 = 0$$

(c)
$$\sin x \left(2\sin x + 1\right) = 0$$

www.m4ths.com – AS Year 1/ Year 2 – Trigonometry (2) Some questions are in radians!

- (1) Solve the equation $2\cos^2 x 9\sin x + 3 = 0$ in the interval $0 < x \le 2\pi$ giving your answers as multiples of π .
- (2) (a) Show the equation $2\cos x + 3\sin x = 0$ can be written as $\tan x = -\frac{2}{3}$.
- (b) Hence or otherwise solve the equation

$$2\cos\frac{\theta}{2} + 3\sin\frac{\theta}{2} = 0$$

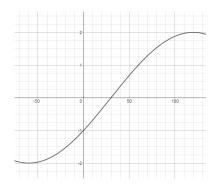
in the interval $0 \le \theta \le 360^{\circ}$ giving your answer to 3 significant figures.

(3) (a) If $x = 3\cos\theta - 1$ and $y = 3\sin\theta + 2$ show that

$$(x+1)^2 + (y-2)^2 = r^2$$

stating the value of r.

- (b) Sketch the graph of $(x+1)^2 + (y-2)^2 = r^2$ showing any points of intersection with the coordinate axis in exact from.
- (4) Show that the equation $2\sin x = 3\tan x$ has 2 solutions in the interval $0 < x \le 2\pi$ giving the solutions as multiples of π .
- (5) The graph below shows part of the curve $y = p \sin(x q^o)$.
- (a) Write down the values of p and q.
- (b) Solve the equation $p \sin(x-q^{\circ}) = \sqrt{3}$ in the interval $0 \le x \le 360^{\circ}$.



- (6) (a) Show the expression $\sin^4 x \cos^4 x$ can be written in the form $a \sin^2 x 1$ stating the value of a.
- (b) Hence or otherwise solve the equation

$$\sin^4 2x - \cos^4 2x = -\frac{1}{2}$$

in the interval $0 \le x \le 180^{\circ}$

(7) (a) Show the equation

$$1 + \tan x = 2\left(\frac{\cos x}{\sin x}\right) \text{ can be}$$

written as $\tan^2 x + \tan x - 2 = 0$.

- (b) Solve the equation $\tan^2 x + \tan x 2 = 0$ for $-180^\circ < x \le 180^\circ$ giving your answers to 3 significant figures
- (8) Given $\sin \alpha = 0.8$ and $90^{\circ} < \alpha < 180^{\circ}$ find the value of:
- (a) $\cos \alpha$
- (b) $\tan^3 \alpha$
- (c) $\sin \alpha \cos^2 \alpha$

where appropriate.

- (9) (a) Sketch the graphs of $y = \sin 2x$ and $y = \cos 2x$ for
- $0 \le x \le 2\pi$ on the same set of axis.
- (b) Using your graph show there are 4 solutions to the equation $\sin 2x = \cos 2x$ in the interval $0 \le x \le 2\pi$.
- (c) Solve the equation $\sin 2x = \cos 2x$ for $0 \le x \le 2\pi$ giving your answers as multiples of π .