<u>www.m4ths.com – AS Year 1</u> <u>Differentiation (1)</u>

(1) Find $\frac{dy}{dx}$ for the following: (a) y = 2x(b) $y = 3x^2$ (c) y = 4(d) $y = 5x^2 - 3x + 1$

(2) Find $\frac{ds}{dt}$ for the following: (a) $s = 4t^3$ (b) $s = 2t^5 - 3t + 1$ (c) s = (t-1)(t+2)

- (3) Find f'(x) for the following: (a) $f(x) = 2x^{\frac{1}{2}}$ (b) $f(x) = 5x^{\frac{4}{3}} - x + 7$ (c) $f(x) = \frac{x^2 - 1}{x + 1}$
- (4) Find $\frac{dy}{dx}$ for the following: (a) $y = \frac{x^2 - 3x}{2x}$ (b) $y = x\sqrt{x} - \frac{3}{x}$ (c) $y = 3x^{0.5} - 3x^{-2} + \frac{4}{x^5}$ (d) $y = x^{\frac{1}{2}} (3 - 2x^2) + c$ (e) $y = \frac{x^{\frac{1}{2}} + 5x^{\frac{3}{4}}}{3x}$ (f) $y = (1 - \sqrt[3]{x})(2x^2 - 3)$

(5) Find the gradient of the curve at the given point:
(a) y = x² + x at x = 3
(b) y = 2x³ - 3x² + x at x = 1
(c) y = x⁵ - x⁴ + 3 at x = -2

(6) Find g'(4) given $g(x) = 2x^{\frac{1}{2}}$

(7) Find the points on the curve $y = 2x^3 - 6x^2 + 3x$ where the gradient is = 21.

(8) Find the gradient of the tangent to the curve

$$s = 4t^3 - \frac{1}{3\sqrt{t}}$$
 at the point $\left(1, \frac{11}{3}\right)$

(9) Find the point where the tangent to the curve $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 12x + 3, x > 0$ is parallel to the *x* axis.

(10) Find the equation of the tangent to the curve $y = x^2 + 4x + 3$ at the point where x = 1 giving your answer in the form y = mx + c

(11) Find the equation of the tangent to the curve $y = \frac{2x-4}{\sqrt{x}}$ at the point where x = 4 giving your answer in the form ax + by + c = 0.

(12) Find an equation of the normal to the curve $s = 4t^5 - 3t + 1$ at the point where t = 1.

(13) Find the equation of the normal to the curve $y = x^{\frac{1}{2}} (x^2 - 3)$ at the point

 $y = x^{-1}(x^{-1} - 5)$ at the point where x = 4 giving your answer in the form y = mx + c

(14) Find
$$\frac{d^2 y}{dx^2}$$
 for each of the
following:
(a) $y = 3x^4 - 5x^2 + 1$
(b) $y = 3x^{\frac{3}{2}} - 4\sqrt{x}$
(c) $y = 5x(x^2 - 3)$
(d) $y = \frac{2x^3 - 3}{x^{0.5}}$

(15) Find f^{*}(2) for the each of the following: (a) $f(x) = 2x^3 - 4x^2 + 3x$ (b) $f(x) = 4x^{\frac{3}{2}} - 5x$ © Steve Blades (16) The normal to the curve $y = x^{\frac{1}{2}} - 3x^{\frac{1}{4}}$ at the point where x = 1 crosses the xat A and the y axis at B. Find the area of the triangle AOB where O is the origin.

(17) The tangent to the curve $y = 3x^2 + 4x + 1$ at the point where x = -1 intersects the line y = 3x - 12 at the point *P*. Find the coordinates of *P*.

(18) Find the coordinates of the point on the curve $y = x^3 + 2x^2 + x$

where
$$\frac{d^2 y}{dx^2} = 16$$
.

(19) Show that the point (5, 2) lies on the tangent to the curve $y = x(\sqrt{x}-1)$ at the point where x = 1.

(20) Mike says that the 2nd derivative of the function $f(x) = x^2(2x^2 - 3x + 4)$ will produce a linear function. (a) Explain why he is wrong. (b) Find the value of the 2nd derivative at the point where x = 0.5.

(21) Find the value of
$$f'(\sqrt{3})$$

given $f(x) = \frac{5x^6 + 2x^4}{x}$.

(22) The displacement of a particle (s) can be modelled by the equation $s = 4t^3 + 2t^2 + 3t - 1$ for $t \ge 0$. (a) Find the displacement of the particle after 2 arounds

particle after 2 seconds. (b) Find the velocity and the acceleration of the particle at t = 1.

(23) Show that if $f(x) = \frac{2}{3}x^3 + x^2 + 2x + 3$ f'(x) = 0 has no real solutions.