www.m4ths.com - AS Year 1
Coordinate Geometry (Circles)
(1) Find the midpoint of the following points:
(a) $(3,7)$ and $(1,3)$
(b) $(-2,3)$ and $(4,-3)$
(c) $\left(1, \frac{3}{4}\right)$ and $\left(\frac{7}{4},-2\right)$
(2) Find the length of line segment $A B$ for the following:
(a) $A(1,3)$ and $B(2,5)$
(b) $A(-3,2)$ and $B(2,-5)$
(c) $A(2,0.5)$ and $B(-1,3)$
(d) Given that the line segment $A B$ is a diameter of a circle, state the radius of each circle in questions $\mathrm{a}-\mathrm{c}$.
(3) The points $(2,1)$ and $(-2,-1)$ are the end points of a diameter of a circle.
(a) Find the centre of the circle
(b) Find the length of the radius
(4) (a) The point $A\left(1, \frac{5}{4}\right)$ is a point on the circle C. Given that the centre of the circle has coordinates $(1.75,-1)$, find the coordinates of the point B such that $A B$ is a diameter of the circle C.
(b) Find the length of the diameter $A B$ to 3 significant figures.
(5) Write down the centre of each circle and the length of its radius:
(a) $x^{2}+y^{2}=25$
(b) $(x-1)^{2}+(y+2)^{2}=16$
(c) $(x+5)^{2}+(y-0.5)^{2}=32$
(d) $(y+2)^{2}+(x-14)^{2}=27$
(e) $(x-3)^{2}+y^{2}-0.01=0$
(f) $(2 x-3)^{2}+(2 y+5)^{2}=36$
(g) $(x-p)^{2}+(y+q)^{2}=r$
(h) $(p x+4)^{2}+(p y+2)^{2}=p^{2}$
(6) Find the centre of each circle and the length of its radius where possible:
(a) $x^{2}+y^{2}+2 x-4 y=20$
(b) $x^{2}+y^{2}-3 x+y=13.5$
(c) $x^{2}-\sqrt{3} x+y^{2}=24.25$
(d) $x^{2}+2 x=4 y+y^{2}$
(e) $x^{2}+y^{2}+p x-4 p y=17 p$
(f) $2 x^{2}+2 y^{2}+4 x-3 y=26$
(g) $y^{2}+(x-3)^{2}=8 y$
(h) $q x^{2}-6 x-2 y+q y^{2}=0$
(Can you spot the equation that isn't a circle?)
(7) The point $A(2,3)$ lies on the circle C. The centre of the circle has coordinates $(8,1)$.
Find an equation for the circle.
(8) The points $P(2,3)$ and
$Q(6,9)$ lie on the circle C.
Given $P Q$ is a diameter of the circle, find an equation of the circle C.
(9) The circle with equation $x^{2}-2 x-4 y+y^{2}=48$
crosses the x axis at the points A and B.
(a) Find the area of the triangle $A B C$ where C is the centre of the circle.
(b) The circle crosses the y axis at the points D and E. Find the length of the chord $D E$ in the form $p \sqrt{q}$ where q is a prime number.
(10) A circle has equation $(x-4)^{2}+(y+3)^{2}=20$. State whether the following points are inside, on the circle or outside the circle:
(a) $(5,1)$,
(b) $(0,7)$
(c) $(9,-2)$
(11) A circle with centre $(6,-1)$ passes through the point $T(-3,2)$. Find an equation for the tangent to the circle at the point T.
(12) A tangent to the circle C at the point P passes through the point $Q(10,-3)$. Given that the equation of circle C is
$(x-2)^{2}+(y+1)^{2}=16$, find the length of the line $P Q$.
(13) A circle has equation
$(x-3)^{2}+(y-5)^{2}=100$.
(a) Show that the points
$P(11,-1)$ and $Q(-3,-3)$ lie on the circle.
The line l is the perpendicular bisector of the chord $P Q$.
(b) Show that line l passes through the centre of the circle.
(14) The points $A(-2,12)$, $B(-5,11)$ and $C(3,-3)$ lie on a circle. Find an equation of the circle.
(15) The points $A(0,4)$,
$B(-3,-5)$ and $C(6,-8)$ lie on a circle.
(a) Prove that $A C$ is a diameter of the circle.
(b) Find an equation of the circle.
(16) A circle has equation $(x+4)^{2}+(y-7)^{2}=90$.
(a) Write down the coordinates of the centre and the length of the radius.
The points $A(-13,10)$ and $B(-7,-2)$ lie on the circle.
(b) Find the area of the triangle $A B C$ where C is the centre of the circle.
(17) A circle touches the y axis at the point $(0,-8)$ and crosses the x axis at the points $(-4,0)$ and $(-16,0)$. Find an equation for the circle.
(18) A circle passes through the points $A(6,3)$ and $B(-2,11)$ and has centre $C(-2, p)$.
(a) Find the value of p
(b) Find an equation of the tangent to the circle at the point $(6,3)$.
(c) The point D has
coordinates $(-10,3)$. Show that
$A D$ is a diameter of the circle.
(d) Show that $\angle A B D=90^{\circ}$
(19) The line $y=x+c$ is a tangent to a circle with the
equation $(x-4)^{2}+(y-1)^{2}=98$.
(a) Find the possible values of c.
(b) Find the possible points where the tangent could touch the circle.
(20) The circle with equation $(x-6)^{2}+(y+4)^{2}=r^{2}$ does not cross either coordinate axis.
(a) Find the set of value of r^{2} that satisfy this condition.
(b) Given further that $r^{2}=9$, find the coordinates of the point P such that P is the furthest point on the circle from the x axis.
(c) Write down the equation of the tangent to the circle at the point P.

