www.m4ths.com - AS Year 2 Dynamics

(1) Santa's sledge of mass 22 kg is being dragged up a smooth slope angled at 30° to the horizontal by a rope inclined at 60° to the slope. The total resistances to motion on the sledge are 12 N .
(a) Find the least value of tension in the rope such that the sledge accelerates at more than $1 \mathrm{~ms}^{-2}$ up the slope.
The rope suddenly snaps. One of Santa's little helpers tries to stop the sledge from travelling back down the slope. Given the 12 N force still resists motion:
(b) Find the minimum force the little helper must apply parallel to the slope to keep the sledge from moving down the slope.
(2) Two particles sit side by side on a wide, rough slope angled at 45° to the horizontal. Particle A has mass 3 kg and particle B has mass 5 kg . Both particles are released from rest. Given particle A takes 3 seconds and particle $B 4$ seconds to travel 8 meters down the slope, find the value of
$\mu_{B}-\mu_{A}$ where μ_{A} and μ_{B} are the coefficients of friction between particles A and B and the slope. Give your answer to 3 significant figures.
(3) A particle is projected up a rough 30 meter slope inclined at an angle β where $\tan \beta=0.75$ with speed $20 \mathrm{~ms}^{-1}$. Given the particle falls 6.8 meters short of reaching the top of the slope, find:
(a) The time taken for the particle to return to its starting position.
(b) The coefficient of friction between the particle and the slope.
(4) Two boxes are connected by a light inextensible string which passes over a smooth, fixed pulley at the top of a wedge. Box A has mass $2 m \mathrm{~kg}$ and box $B m \mathrm{~kg}$. Box A lies on the plane angled at 30° to the horizontal and box B lies on the plane angled at 60° to the horizontal. Both planes have rough surfaces where the coefficient of friction between the boxes and the planes are μ_{A} and μ_{B} respectively. Given the tension in the string is 50 N and box A accelerates down the plane at $1 \mathrm{~ms}^{-2}$:
(a) Express μ_{A} in terms of m
(b) Express μ_{B} in terms of m

Given further the coefficient of friction between the boxes and their respective planes are equal:
(c) Find the mass of each box.
(5) A car of mass 800 kg is towing a caravan of mass 300 kg by means of a rigid tow bar up a hill with speed $20 \mathrm{~ms}^{-1}$ and acceleration $2 \mathrm{~ms}^{-2}$. A force of 200 N is retarding the progress of the car and a force of 100 N is retarding the progress of the caravan. Given the hill is inclined at an angle of 10° to the horizontal:
(a) Find the magnitude of the driving force of the cars engine.
(b) The magnitude of the force in the rigid tow bar.
After 3 seconds the tow bar snaps. The car continues to move up the hill with the driving force found in part (a) and still has 200 N retarding it's progress. Find how far the car is ahead of the caravan when the caravan comes to rest.
(6) Two particles P and Q of mass 4 kg and 3 kg respectively are connected by light inextensible string. Both
particles hang 2 meters above the ground at rest over a smooth fixed pulley.
The particles are released from rest.
(a) Find the acceleration of particle P and hence state the acceleration of Q.
(b) Find the tension in the string.
(c) State the modelling
assumptions that you have made.
(d) Sketch an acceleration/time graph for particle Q from the moment of release to the time when it reaches its maximum height. The values given on your graph axis must be correct to 3 significant figures where appropriate. (You may assume particle Q doesn't hit the pulley)
(7) A particle of mass 5 kg is at rest on a rough plane inclined at an angle α to the horizontal where $\sin \alpha=0.8$. The particle is connected to second particle of mass 2 kg by a light inextensible string over a smooth pulley fixed at the top of the plane. The 2 kg particle hangs freely one meter below the pulley.
Given the particle of mass 5 kg accelerates down the plane with acceleration $0.5 \mathrm{~ms}^{-2}$:
(a) Find the tension in the string.
(b) Find the coefficient of friction between the 5 kg particle and the plane.
(c) Find the magnitude of the force exerted on the pulley.
(d) Write down the distance travelled by the 5 kg particle when the 2 kg particle hits the pulley.
(e) Draw a velocity/time graph for the motion of the 5 kg particle from the time it's released from rest until the time the 2 kg particle hits the pulley.

