C3 help sheet on Trigonometry
$\sec (x)=\frac{1}{\cos (x)}$
Domain : $x \in \mathfrak{R}$
$x \neq(2 n+1) \frac{\pi}{2}$
Range : $y \leq-1$

and $y \geq 1$
Where $\cos (\mathrm{x})=0$ draw an
asymptote! $1 / 0$ is undefined
$\operatorname{cosec}(x)=\frac{1}{\sin (x)}$

Domain : $x \in \mathfrak{R}$

$x \neq(2 n+1) \frac{\pi}{2}$
Range : $y \leq-1$

and $y \geq 1$
Where $\sin (\mathrm{x})=0$ draw an asymptote! $1 / 0$ is undefined
$\cot (x)=\frac{1}{\tan (x)}$
or
$\cot (x)=\frac{\cos (x)}{\sin (x)}$
Domain : $x \in \mathfrak{R}$
$x \neq n \pi$
Range : $y \in \mathfrak{R}$
Where $\sin (x)$ and $\tan (x)=0$
draw an asymptote!
$\cos ^{2}(x)+\sin ^{2}(x) \equiv 1$
$\operatorname{cosec}^{2}(x) \equiv \cot ^{2}(x)+1$
$\sec ^{2}(x) \equiv \tan ^{2}(x)+1$
These are reciprocal trig identities. You can derive the 2 nd two by dividing through by $\sin ^{2} x$ or by $\cos ^{2} x$ $a \cos (b x+c)+d$ Graph transformations! Be careful with multiple transformations in the same direction. Carry out 'a' followed by 'd' with vertical transformations and ' c ' followed by ' b ' with horizontal!

$y=\arcsin (x)$

Domain : $-1 \leq x \leq 1$
Range : $\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$
This is the inverse of sin.
To have an inverse you must restrict the domain to make it a 1-2-1
Reflect $\sin (\mathrm{x})$ in $\mathrm{y}=\mathrm{x}$

$y=\arccos (x)$

Domain: $-1 \leq x \leq 1$
Range: $0 \leq y \leq \pi$ This is the inverse of cos. To have an inverse you must restrict the domain to make it a 1-2-1 Reflect $\cos (x)$ in the line $\mathrm{y}=\mathrm{x}$
$y=\arctan (x)$
Domain : $x \in \mathfrak{R}$
Range : $\frac{-\pi}{2}<y<\frac{\pi}{2}$

This is the inverse of ta
Be careful with the
The addition formulae below are given in the exam.
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$

$\sin 2 A=2 \sin A \cos A$

The Double angle identity for sin. This can be derived from the addition formulae but are given in the formula book.
$\cos 2 A=\cos ^{2} A-\sin ^{2} A$
$\cos 2 A=2 \cos ^{2} A-1$
$\cos 2 A=1-2 \sin ^{2} A$
The double angle for cos. This too can be derived from the addition formulae. The second two versions come from swapping the sin or cosine in the previous one.
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
The double angle identity for $\tan (\mathrm{x})$. Look out for
equations or identities with $\cot (2 \mathrm{x})$ in them!

$\sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}$

This is the half angle for sin. It can be derived from the double angle by swapping A for $1 / 2 \mathrm{~A}$
$\cos A=\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}$
$\cos A=2 \cos ^{2} \frac{A}{2}-1$
$\cos A=1-2 \sin ^{2} \frac{A}{2}$
Half angle identity for \cos. The same applies for $\tan (\mathrm{x})$

$$
\tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}
$$

Remember! If you are solving equations with $1 / 2 x$ or 2 x you will need to consider the interval you are solving
for.
$\sin P+\sin Q=2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right)$
$\sin P-\sin Q=2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)$
$\cos P+\cos Q=2 \cos \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right)$
$\cos P-\cos Q=-2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)$
These formulae are given in the exam but can be derived from the addition formulae. Examples of equations related to these identities could be an equation such as $\sin 6 x+\sin 4 x=0$ for example.
The form $R \sin (x \pm \alpha)$ and $R \cos (x \pm \alpha)$

$$
R>0, \alpha<\frac{\pi}{2}
$$

$$
R=\sqrt{a^{2}+b^{2}}
$$

$$
\alpha=\tan ^{-1}\left(\frac{a}{b}\right) \text { or } \tan ^{-1}\left(\frac{b}{a}\right)
$$

R gives the stretch in the y direction
a gives the horizontal shift
Use the addition formulae to expand either form (which will be given) and equate the coefficients.
Equations in the form $a \cos (x)+b \sin (x)$ will be solved using this method.
Often sketching the new graph can help solve problems. The value of R, in general, will give the
maximum/minimum value and the phase shift will tell you how far the maximum point has move horizontally.

$\cos (\mathrm{x})$ is an even function which means:

$\cos (-x)=\cos (x)$
Both $\sin (\mathrm{x})$ and $\tan (\mathrm{x})$ are odd functions which means: $\sin (-x)=-\sin (x)$
$\tan (-x)=-\tan (x)$
This also holds true for the corresponding reciprocal functions.
Trig Values from $0-90^{\circ} / \pi / 2$
(invert the fraction for reciprocal functions)

x	$\cos (x)$	$\sin (x)$	$\tan (x)$
0	1	0	0
$\frac{\pi}{6} / 30^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4} / 45^{\circ}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
$\frac{\pi}{3} / 60^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2} / 90^{\circ}$	0	1	∞^{+}

The same rules apply for positive and negative values:
All values are positive in the $1^{\text {st }}$ quadrant
$\sin (x)$ and $\operatorname{cosec}(x)$ are positive in the $2^{\text {nd }}$
$\tan (x)$ and $\cot (x)$ are positive in the $3^{\text {rd }}$
$\cos (x)$ and $\sec (x)$ are positive in the 4th
The unit circle giving values for cosine and sine.

www.m4ths.com © 2015
I do not own the rights to the unit circle.

