Core Mathematics C4

Advanced

Practice Paper 3

Time: 1 hour 30 minutes
(1) Find an expression for $\frac{d y}{d x}$ given $\frac{\cos (y)}{x}-\ln (x)=3 y-1$
(2) (a) Find the values of A and B such that $\frac{x^{2}+x+7}{(1-x)(2+x)^{2}} \equiv \frac{A}{(1-x)}+\frac{B}{(2+x)^{2}}$
(4 marks)
(b) Hence or otherwise find the binomial expansion of $\frac{x^{2}+x+7}{(1-x)(2+x)^{2}}$, up to an including the term in x^{2} stating the set of values of x for which expansion is valid.
(6 marks)
(3) (a) Find $\int 3^{x} d x$
(b) Solve the differential equation $3^{-x} \frac{d y}{d x}=\cos ^{2}(y)$ given the point $\left(0, \frac{\pi}{4}\right)$ lies on the curve.
(4) A curve has parametric equations $x=t^{2}$ and $y=2 t-1, t \in \mathfrak{R}$.
(a) The curve cross the x axis at the point $A(p, 0)$ and touches the y axis at the point $B(0, q)$. Find the values of p and q.
(b) Show that the cartesian equation of the curve can be written in the form $x=\mathrm{f}(y)$.
(c) Find an equation of the normal to the curve at the point C where $t=1$.
(d) The normal intersects the curve again at the point $D(r, s)$. Find the value of r and s.
(5) (a) The curve $y=x^{2} \sqrt{x+1}$ crosses the x axis at the points A and B where $B>A$. Find the coordinates of A and B.
(3 marks)
(b) Use the trapezium rule with 3 strips to find an approximate value for the area trapped between the curve $y=x^{2} \sqrt{x+1}$ and the x axis from A to B giving your answer to 3 decimal places.
(4 marks)
(6) The curve $y=x e^{\frac{1}{2} x}$ is rotated 2π radians about the x axis from the point $x=0$ to $x=1$. Show the exact volume of the solid generated is $\pi(e-2)$.
(8 marks)
(7) Using the substitution $u^{2}=1+x^{5}$ find $\int x^{4} \sqrt{1+x^{5}} d x$.
(6 marks)
(8) Line l_{1} has equation $r_{1}=\left(\begin{array}{l}3 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ -2 \\ 5\end{array}\right)$ and line l_{2} has equation $r_{2}=\left(\begin{array}{l}14 \\ -8 \\ 7\end{array}\right)+\mu\left(\begin{array}{l}3 \\ -1 \\ -1\end{array}\right)$.
(a) Show lines l_{1} and l_{2} are perpendicular.
(b) The lines intersect at the point P. Find the coordinates of P.
(c) Show the point Q with coordinates $(4,-3,5)$ lies on l_{1} and the point $R(11,-7,8)$ lies on l_{2}.
(d) Show that the area of the triangle $Q P R=\sqrt{330}$

End of Questions

