Core Mathematics C4

Advanced

Practice Paper 1

Time: 1 hour 30 minutes
(1) (a) Express $\frac{2 x^{2}-2 x+3}{(1+2 x)(1-x)^{2}}$ in partial fractions.
(b) Hence find the integral of $\frac{4 x^{2}-4 x+6}{(1+2 x)(1-x)^{2}}$
(2) (a) Find an equation of the normal to the curve with parametric equations $x=3 t^{2}$ and $y=(4 t-1)^{3}$ at the point where $t=1$.
(b) Show the equation of the curve can be written in the form $y=\mathrm{f}(x)$
(c) Find where the curve crosses the coordinate axis.
(3) Using the binomial expansion $(1-2 x)^{0.5}$ with a suitable value of x find an approximation for $\frac{7 \sqrt{2}}{10}$ giving your answer to 4 decimal places.
(4) The population of an island is increasing proportionally to the square of the population. Write a differential equation to model this situation. (You do not have to solve the equation).
(5) (a) The lines l_{1} with equation $r_{1}=\left(\begin{array}{l}6 \\ -2 \\ 8\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ -5 \\ 7\end{array}\right)$ and l_{2} with equation $r_{2}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}3 \\ 5 \\ -8\end{array}\right)$ intersect at the
point Q. Find the coordinates of point Q.
(b) Show the point $P(7,-7,15)$ lies on l_{1} and the point $R(-2,-2,10)$ lies on l_{2}.
(c) Hence find the area of the triangle $P Q R$.
(6) Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}=2 x e^{3 y}$ given the point $(0,1)$ lies on the curve.
(7) Express $\frac{d y}{d x}$ in terms of x and y given $2 x y+\cos (2 x+1)=3 \sin (4 y)-7$
(8) Part of the curve $y=\frac{\sqrt{x}}{e^{x}}$ is shown below.

The curve is rotated 360° about the x axis from the point $x=0$ to the point $x=1$. Find the exact volume of the solid generated.
(9) (a) Using the trapezium rule with 3 strips find an approximation to the area trapped under the curve $y=\cos ^{2}(x)$ from $x=0$ to $x=\frac{\pi}{2}$
(b) Using integration find the exact area trapped under the curve $y=\cos ^{2}(x)$ from $x=0$ to $x=\frac{\pi}{2}$
(c) Find the percentage error between the approximation in part (a) and your answer in part (b).

