Core Mathematics C3

Advanced

Practice Paper 3

Time: 1 hour 30 minutes
(1) (a) Simplify $\frac{2 x^{2}+x-3}{x^{2}-1}$ (3 marks)
(b) Hence or otherwise solve the equation $\ln \left(2 x^{2}+x-3\right)-\ln \left(x^{2}-1\right)=5$.
(2) (a) Sketch the graph of $y=\operatorname{cosec}(x), 0^{\circ} \leq x \leq 360^{\circ}$ stating the equation of any asymptotes.
(b) The graph of the $y=a \operatorname{cosec}(x-b)$, where x is measured in degrees, has a minimum point with coordinates $\left(120^{\circ}, 2\right)$ and a maximum point with coordinates $\left(300^{\circ},-2\right)$. Find the values of a and b.
(c) Using your answers from part (a) solve the equation $a \operatorname{cosec}(x-b)=4$ for $0^{\circ} \leq x \leq 360^{\circ}$
(3) (a) Show that the equation $x^{2} e^{x}-1=0$ can be written as $x=\left(\frac{1}{e^{x}}\right)^{\frac{1}{2}}$.
(b) Use the iterative formula $x_{n+1}=\left(\frac{1}{e^{x_{n}}}\right)^{\frac{1}{2}}, x_{0}=0.6$ to find x_{1}, x_{2} and x_{3} giving each answer to 3 decimal places. (3 marks)
(4) (a) $\mathrm{f}(x)=e^{x-2}$. Sketch the graph of $y=\mathrm{f}(x)$ showing the point of intersection with the y axis.
(b) State the range of the function $\mathrm{f}(x)$.
(c) Find $\mathrm{f}^{-1}(x)$ and state its domain.
(d) Sketch the graph of $y=\mathrm{f}^{-1}(x)$ and $y=\mathrm{f}(x)$ on the same set of axis and state the number of solutions to the equation $\mathrm{f}^{-1}(x)=\mathrm{f}(x)$.
(5) $\mathrm{f}(x)=3 x^{2}, x>0$ and $\mathrm{g}(x)=\sqrt{x}, x>0$.
(a) Find (i) $f(5)$ and (ii) $g(16)$.
(b) $\mathrm{gf}^{-1}(48)$.
(c) Solve the equation $\operatorname{fg}(x)=12$.
(6) (a) Sketch the graph of $y=\left|\frac{2}{x}\right|$ and $y=x+1$ on the same set of axis showing any points where the graphs cross the coordinate axis.
(b) Find the solution to the equation $\left|\frac{2}{x}\right|=x+1$.
(5 marks)
(c) Hence or otherwise solve the inequality $\left|\frac{2}{x}\right|<x+1$.
(2 marks)
(7) $\mathrm{f}(x)=2 x^{2} \ln (x), x \in \mathfrak{R}, x>0$. Show the coordinates of the stationary point on the curve $y=\mathrm{f}(x)$ can be written as $\frac{1}{\sqrt{e}}, \frac{2}{e}$.
(7 marks)
(8) (a) Show that $\sin \left(x+\frac{\pi}{4}\right)$ can be written as $\frac{1}{\sqrt{2}}(\sin (x)+\cos (x))$.
(4 marks)
(b) Hence or otherwise solve the equation $\frac{\sqrt{3}}{2}=\frac{1}{\sqrt{2}}(\sin (x)+\cos (x)), 0 \leq x \leq 2 \pi$, giving your answers as multiples of π.
(9) Find the equation of the tangent to the curve $x=4 \sin (2 y)+\frac{\pi}{2}$ at the point where $y=\frac{\pi}{2}$ in the form $a x+b y+c=0$, where a and b are integers and c is a multiple of π.

