www.m4+hs.com

Core Mathematics C3

Advanced

Practice Paper 3

Time: 1 hour 30 minutes

(1) (a) Simplify
$$\frac{2x^2 + x - 3}{x^2 - 1}$$
 (3 marks)

(b) Hence or otherwise solve the equation $\ln(2x^2 + x - 3) - \ln(x^2 - 1) = 5$.

(2) (a) Sketch the graph of $y = \csc(x)$, $0^{\circ} \le x \le 360^{\circ}$ stating the equation of any asymptotes. (4 marks)

(b) The graph of the $y = a \operatorname{cosec}(x-b)$, where x is measured in degrees, has a minimum point with coordinates (120°, 2) and a maximum point with coordinates (300°, -2). Find the values of a and b. (4 marks)

(c) Using your answers from part (a) solve the equation $a \csc(x-b) = 4$ for $0^\circ \le x \le 360^\circ$ (4 marks)

(3) (a) Show that the equation $x^2 e^x - 1 = 0$ can be written as $x = \left(\frac{1}{e^x}\right)^{\frac{1}{2}}$. (2 marks)

(b) Use the iterative formula $x_{n+1} = \left(\frac{1}{e^{x_n}}\right)^{\frac{1}{2}}$, $x_0 = 0.6$ to find x_1, x_2 and x_3 giving each answer to 3 decimal places.

(3 marks)

(4 marks)

(4) (a) $f(x) = e^{x-2}$. Sketch the graph of $y = f(x)$ showing the point of intersection with the y axis.	(3 marks)
(b) State the range of the function $f(x)$.	(1 marks)
(c) Find $f^{-1}(x)$ and state its domain.	(3 marks)

(d) Sketch the graph of $y = f^{-1}(x)$ and y = f(x) on the same set of axis and state the number of solutions to the equation $f^{-1}(x) = f(x)$. (3 marks)

(5)
$$f(x) = 3x^2, x > 0$$
 and $g(x) = \sqrt{x}, x > 0$.
(a) Find (i) $f(5)$ and (ii) $g(16)$.
(2 marks)

(b) $gf^{-1}(48)$.
(3 marks)

(c) Solve the equation $fg(x) = 12$.
(3 marks)

(6) (a) Sketch the graph of $y = \left|\frac{2}{x}\right|$ and y = x + 1 on the same set of axis showing any points where the graphs cross the coordinate axis. (4 marks)

- (b) Find the solution to the equation $\left|\frac{2}{x}\right| = x+1$. (5 marks)
- (c) Hence or otherwise solve the inequality $\left|\frac{2}{x}\right| < x+1$. (2 marks)

(7) $f(x) = 2x^2 \ln(x)$, $x \in \Re$, x > 0. Show the coordinates of the stationary point on the curve y = f(x) can be written as $\frac{1}{\sqrt{e}}, \frac{2}{e}$. (7 marks)

(8) (a) Show that
$$\sin\left(x + \frac{\pi}{4}\right)$$
 can be written as $\frac{1}{\sqrt{2}}(\sin(x) + \cos(x))$. (4 marks)

(b) Hence or otherwise solve the equation $\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{2}} (\sin(x) + \cos(x)), 0 \le x \le 2\pi$, giving your answers as multiples of π . (4 marks)

(9) Find the equation of the tangent to the curve $x = 4\sin(2y) + \frac{\pi}{2}$ at the point where $y = \frac{\pi}{2}$ in the form ax + by + c = 0, where *a* and *b* are integers and *c* is a multiple of π . (7 marks) End of Questions