Core Mathematics C3

Advanced

Practice Paper 1

Time: 1 hour 30 minutes
(1) (a) Draw the graphs of $y=4-x^{2}$ and $y=2 x^{3}$ on the same set of axis.
(b) Using your graphs, explain why there is only one solution to the equation $2 x^{3}+x^{2}-4=0$
(c) Show that the solution to the equation $2 x^{3}+x^{2}-4=0$ lies between 1.1 and 1.2
(2) (a) Solve the equation $|2 x-1|=x+4$
(b) Hence solve the inequality $|2 x-1|>x+4$
(3) Given A is an acute angle and B is an obtuse angle and $\cos A=\frac{3}{5}$ and $\sin B=\frac{5}{13}$
(a) Find the value of $\sin 2 A$
(b) Find the value of $\tan B$
(c) Find the value of $\sec ^{2} 2 A$
(4) The population of a small island is modelled by the equation $P=P_{o} e^{k t}$ where k is a positive constant and t is the time and is measured in years.
(a) State whether the population is increasing or decreasing giving a reason for your answer.
(1 marks)
(b) Given the initial population is 4000 and after 5 years the population is 6300 write down the value of P_{o} and find the value of k to 3 significant figures.
(c) Find the rate of change of the population after 9 years giving your answer to 3 significant figures. (3 marks)
(d) Draw the graph of $\frac{d P}{d t}$ showing any points where the curve meets the coordinate axis.
(5) Find the first positive value of x in radians for which $\mathrm{f}(x)=3 e^{x} \sin (2 x)$ is stationary.
(6) (a) Simplify fully $\frac{x^{2}+x-12}{2 x^{2}-7 x+3}$
(b) Hence solve the equation $\ln \left(x^{2}+x-12\right)=4+\ln \left(2 x^{2}-7 x+3\right)$ giving your answer in terms of e.
(7) $\mathrm{f}(x)$ is a linear function is defined for all values of $x . y=\mathrm{f}(x)$ passes through the points $A(1,2)$ and $B(5,10)$.
(a) Find the inverse function $\mathrm{f}^{-1}(x)$ and state its range.
(b) Given $\mathrm{g}(x)=(2 x+1)^{5}$ solve the equation $\operatorname{gf}(x)=32$
(c) Find $\frac{d}{d x} \operatorname{gf}(x)$
(8) (a) Show that $3 \cot (x)+3 \tan (x) \equiv p \operatorname{cosec}(q x)$ stating the values of p and q.
(4 marks)
(b) Hence or otherwise solve the equation $\cot (x)+\tan (x)=4,0 \leq x \leq \pi$ giving your answers in terms of π.
(9) (a) $\mathrm{f}(x)=e^{x}$. Draw the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axis and stating the equations of any asymptotes.
(3 marks)
(b) Draw the graph of $\mathrm{f}(x)+k, \quad-1<k<0$ showing any points of intersection with the coordinate axis and stating the equations of any asymptotes.
(c)The graph of $y=\mathrm{f}(x-1)-3$ crosses the x axis at the point $A(p, 0)$, Find the exact value of p.
(10) Show the curve $y=\frac{x e^{x}}{x+1}$ has no stationary points.

End of Questions

