Core Mathematics C2
Advanced Subsidiary

Practice Paper 3

Time: 1 hour 30 minutes
(1) (a) Solve the equation $2 \cos (x) \sin (x)=\sin (x)$ for $0^{\circ} \leq x \leq 360^{\circ}$
(b) Hence or otherwise solve the equation $2 \cos (2 \theta) \sin (2 \theta)=\sin (2 \theta)$ for $0^{\circ} \leq \theta \leq 180^{\circ}$
(2) $\mathrm{f}(x)=p x^{3}+2 q x^{2}-3 x-5$. Given $(x-1)$ is a factor of $\mathrm{f}(x)$ and the remainder is 9 when $\mathrm{f}(x)$ is divided by $(x+2)$ find the values of p and q.
(6 marks)
(3) Show that $\int_{1}^{4} \sqrt{x}(5-2 x) d x=\frac{-22}{15}$.
(7 marks)
(4) In the diagram below the circle has centre $(0,0)$ and passes through the points $(4,0),(0,4),(-4,0)$ and $(0,-4)$. Also pictured in the diagram are the lines $y=x$ and $x=6$.

(a) Find the equation of the circle.
(3 marks)
(b) Find the area of the shaded region R in the form $a+b \pi$.
(7 marks)
(5) (a) Sketch the graph of $y=2^{x}$ showing any points of intersection with the coordinate axis. Write down the equation of the asymptote of the curve.
(b) Solve the equation $2^{x}=3$ giving your answer to 3 significant figures.
(c) Using a sketch show there are no real solutions to the equation $2^{x}=-1$
(6) (a) Find the terms up to and including the term in x^{3} of the binomial expansion $(1-2 x)^{7}$.
(b) Using your answer to part (a) find an approximation for 0.98^{7} correct to 4 decimal places.
(3 marks)
(c) Explain how you could increase the accuracy of your approximation.
(1 mark)
(7) (a) Given $y=\frac{1}{4} x^{4}+x^{2}-3 x+5$ find $\frac{d y}{d x}$.
(3 marks)
(b) Given $x^{3}+2 x-3 \equiv\left(x^{2}+x+3\right)(x-1)$ find any stationary points of the curve $y=\frac{1}{4} x^{4}+x^{2}-3 x+5$ and determine their nature.
(8) (a) Fred starts from home (H) and walks on a bearing of 050° for 4 km to the point (A). He then walks on a bearing of 120° for 6 km to reach the point (B). Find the distance $H B$ to 3 significant figures.
(b) Fred is marking out a field $H A B$. Find the area of the field to 3 significant figures.
(9) (a) Show that $\frac{\log _{2} 32+\log _{8} 16}{\log _{4} 8}=\frac{38}{9}$. You must show each step of your workings.
(b) Hence or otherwise solve the equation $\frac{\log _{2} 32+\log _{8} 16}{\log _{4} 8}=\log _{6} x$ correct to 3 significant figures (3 marks)
(c) Given $\log _{x} y=p$ and $\log _{x} z=q$ fully simplify $\log _{x} \frac{x^{3} y^{4}}{z}$.

End of Questions

