Core Mathematics C2
Advanced Subsidiary

Practice Paper 2

Time: 1 hour 30 minutes
(1) (a) Find the remainder when $\mathrm{f}(x)=2 x^{3}-7 x^{2}+2 x+3$ is divided by $(x-1)$
(b) Hence or otherwise solve the equation $\mathrm{f}(x)=0$
(c) State the maximum number of stationary points of graph $y=\mathrm{f}(x)$
(2) (a) Using the triangle below show that $\cos ^{2}(x)+\sin ^{2}(x) \equiv 1$

(b) Given $0<x<90^{\circ}$ write down the value of $\tan (x)$
(c) Solve the equation $2 \sin ^{2}(x)-5 \cos (x)+1=0$ for $0<x<360^{\circ}$
(3) Fred invests $£ 2000$ in a bank account that pays 4% compound interest at the end of each year.
(a) Show that at the end of the $3^{\text {rd }}$ year his investment will be worth less than $£ 2500$.
(b) Find the number of years it will take for Fred's investment to be worth more than $£ 6200$.
(4) A circle has equation $(x-3)^{2}+(y-2)^{2}=20$. The circle has centre C and crosses the x axis at the points A and B.
(a) Write down the coordinates of C.
(b) Find the coordinates of A and B. (4 marks)
(c) Find the size of angle $A C B$ giving your answer in radians to 3 significant figures.
(5) (a) Solve the equation $\log _{6}(x+3)=1-\log _{6}(x-2)$
(b) Using the substitution $p=2^{x}$ or otherwise solve the equation $2^{x}-2=\frac{8}{2^{x}}$
(6) Find the stationary points on the curve $y=2 x^{3}+7 x^{2}-12 x+3$ and determine their nature.
(7) The diagram below shows part of the curve $y=3 x-x^{2}$ and the line $x=y$. The curve and the line intersect at the points A and B. The shaded region R is the area bound by the line $x=y$ and the curve $y=3 x-x^{2}$.

(a) Find the coordinates of A and B.
(b) Show the area of the shaded region R is $\frac{4}{3}$.
(8) Find the coefficient of term in x^{3} in the expansion of $(1+x)^{2}(2-x)^{5}$
(9) (a) Sketch the graphs of $y=\sin (x)$ and $y=\cos (x)$ for $0 \leq x \leq 2 \pi$ on the same set of axis showing any points of intersection with the coordinate axis.
(b) State with a reason the number of solutions to the equation $\sin (x)=\cos (x)$ for $0 \leq x \leq 2 \pi$
(c) Solve the equation $\sin (x)=\cos (x)$ for $0 \leq x \leq 2 \pi$ giving your answers in terms of π.
(4 marks)

End of Questions

