Core Mathematics C1

Advanced Subsidiary

Practice Paper 3

Time: 1 hour 30 minutes
(1) (a) Part of the curve $y=\mathrm{f}(x)$ is shown in Figure 1 below. The curve has a minimum point at $(-2,-1)$ a maximum point at $(3,1)$ and passes through the origin. State fully the single transformation that maps $\mathrm{f}(x)$ onto the graphs of (a) (i) and (b) (ii) shown below.
(4 marks)

Figure 1

(i)

(ii)
(c) Sketch the graph of $y=\mathrm{f}(-x)$ stating the coordinates of the maximum and minimum points.
(2) (a) Find the values of a and b such that $x^{4}-16 \equiv\left(x^{2}+4\right)(x+a)(x+b)$
(b) Hence of otherwise write down the 2 real solutions to the equation $x^{4}-16=0$
(3) Simplify $2^{-1} p q^{0.5} \times 2 p q^{\frac{3}{2}}$
(4) The line l_{1} is parallel to the line $3 x-2 y=4$ and passes through the origin O.
(a) Find an equation for the line l_{1}.
(b) Show that the point $A(8,12)$ lies on the line l_{1}.
(c) Find an equation for the line perpendicular to l_{1} that passes through the midpoint of $O A$.
(5) (a) Show that $\frac{2}{3-\sqrt{8}}$ can be written in the form $6+a \sqrt{2}$ where a is an integer to be found.
(b) A rectangle has an area of 2 and side lengths $3-\sqrt{8}$ and l. Hence or otherwise write down the length of l giving your answer as a simplified surd.
(6) An arithmetic sequence has first term a and common difference d. Given the $5^{\text {th }}$ term of the sequence is 16 and the sum of the first ten terms is 175 , find the $12^{\text {th }}$ term.
(6 marks)
(7) The point $(4,11)$ lies on the curve $y=\mathrm{f}(x)$. Given $\frac{d y}{d x}=\frac{2 x^{\frac{3}{2}}-3}{\sqrt{x}}$ find an expression for $\mathrm{f}(x)$.
(8) The circle $(x-3)^{2}+(y-2)^{2}=5$ and the line $y=x+2$ intersect at the points A and B. Find the length $A B$ giving your answer in the form \sqrt{k} where k is an integer to be found.
(9) (a) Find an equation of the normal to the curve $y=x\left(3-x^{\frac{3}{2}}\right)$ at the point where $x=1$.
(b) The normal to the curve meets the line $y=2 x$ at the point A. Find the coordinates of A.
(c) Show the line $y=2 x$ pass through the origin O.
(d) The normal to the curve crosses the y axis at the point B. Find the area of the triangle $O B A$.
(10) Show that the function $\mathrm{f}(x)=x^{2}-2 x+3$ is positive for all values of x.
(11) (a) $\mathrm{f}(x)=2 x^{2}-k x+(k-1)$. Given the discriminant of $\mathrm{f}(x)=-8$, find the value of k.
(b) Sketch the graph of $y=\mathrm{f}(x)$ showing the coordinates of the minimum point.

