Core Mathematics C1

Advanced Subsidiary

Practice Paper 1

Time: 1 hour 30 minutes
(1) (a) Simplify $(1+2 \sqrt{a})(2-\sqrt{a})$ giving your answer in terms of a.
(b) Solve the equation $(1+2 \sqrt{a})(2-\sqrt{a})=0$
(2) Simplify fully $\left(25 p^{3} q^{\frac{1}{2}}\right)^{-0.5}$
(3 marks)
(3) The line l passes through the points $A(-1,-1)$ and $B(5, p)$. The gradient of line l is -1 .
(a) Find the value of p
(b) Line l crosses the x axis at the point C and the y axis at the point D. Find the area of the triangle $D O C$ where O is the origin.
(4) (a) The sum of the first 10 terms of an arithmetic sequence is -95 . Given the common difference of the sequence is -3 find the first term of the sequence.
(b) Find the $8^{\text {th }}$ term of the sequence.
(5) The curve $y=\mathrm{f}(x)$ passes through the point (2,20) and it's gradient function $\frac{d y}{d x}=3 x^{2}+x+3$.
(a) Find $\mathrm{f}(x)$
(b) Show that the gradient of $\mathrm{f}(x)$ is never negative.
(6) A sequence is defined by

$$
\begin{aligned}
& a_{n+1}=2 a_{n}-1, a \geq 1 \\
& a_{1}=3 p
\end{aligned}
$$

(a) Find an expression for a_{2} and a_{3} in terms of p.
(2 marks)
(b) Given $\sum_{i=1}^{4} a_{i}=79$ find the value of p.
(4 marks)
(7) $\mathrm{f}(x)=\frac{1}{3} x^{3}-x^{2}-8 x+5$
(a) Draw the graph of $y=\mathrm{f}^{\prime}(x)$ showing any points of intersection with the coordinate axis.
(b) Draw the graph of $y=2 \mathrm{f}^{\prime}(x)$ showing any points of intersection with the coordinate axis.
(c) Draw the graph of $y=-\mathrm{f}^{\prime}(x)$ showing any points of intersection with the coordinate axis.
(8) Find the equation of the normal to the curve $y=\frac{2 x+\sqrt{x}}{x^{0.5}}$ at the point where $x=4$ giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.
(9) (a) Solve the simultaneous equations

$$
\begin{aligned}
& x y=6 \\
& x^{2}+y^{2}=13
\end{aligned}
$$

(8 marks)
(b) Draw the graph of $y=\frac{1}{x}$ stating the equations of any asymptotes.
(c) Hence draw the graph of $x y=6$ stating the equations of any asymptotes.
(10) (a) Given the line $y=2 x-p$ is a tangent to the curve $y=x^{2}+4 x-11$ find the value of p.
(b) Find the point where the line $y=2 x-p$ meets the curve $y=x^{2}+4 x-11$

End of Questions

