# umu.m4ths.com 

## Core Mathematics C1

## Advanced Subsidiary

Extension Practice Paper

Time: 1 hour 30 minutes
(1) The $n$th derivative of the function $t(x)$ where $t(x)=5 x^{6}-9 x^{5}+3 x^{3}-0.5$ is a cubic function.
(a) State the value of $n$
(b) Find the ratio of the coefficient in $x^{3}$ to the coefficient in $x^{2}$ of the cubic function giving your answer in the form $1: k$ where $k$ is a fraction in its simplest form.
(5 marks)
(2) Find the values of the constants $p$ and $q$ such that $\frac{\sqrt{p}}{\sqrt{p}+2 p}=\frac{2 \sqrt{p}-q}{3 p+q}, p, q \geq 0$
(6 marks)
(3) Given $0<a<1$ put the following expressions in ascending order:

$$
\frac{1}{\sqrt{a}}, a^{-1}, a, a^{1.3}, a^{\frac{1}{3}}, \sqrt[2]{a^{5}},(a \times a-1),\left(a^{-2}\right)^{-\frac{1}{8}}
$$

(6 marks)
(4) The line $l$ passing through the points $A$ and $B$ forms the right angled triangle $A O B$ where $O$ is the origin.
The area of the triangle $A O B$ is $4 \sqrt{3}$. Given $A$ lies on the negative $y$ axis and $B$ has coordinates $(4,0)$ find the equation of the line $l$ in the form $y=m x+c$.
(9 marks)
(5) The line $y=k$ where $k$ is a constant passes thorough the curve with equation $y=x^{2}-x-12$ at the points $A$ and $B$ where $A$ and $B$ are integers.
Given the length of the line segment $A B$ is 9 units find the value of $k$.
(6) The function $t(x)$ at the point $T(3,18)$ has gradient $1.5 t(x)$.

Given the second derivate of the function $t(x)$ is $2(3 x+1)$ sketch the curve $y=t(x)$ clearly showing any points of intersection with the coordinate axes.
(9 marks)
(7) The line $l$ with equation $y=a x+b$ cuts the lines $x=-2$ and $x=4$ at the
points $A$ and $B$ where $y_{A}$ and $y_{B}$ are $p$ and $\frac{2}{3} p$ respectively, $p<0$.
The points $C$ and $D$ are the points where the lines $x=-2$ and $x=4$ cross the coordinate axis. The trapezium $A B C D$ has an area of 24 . Find the distance from the origin to the point where line $l$ crosses the $x$ axis.
(12 marks)
(8) A circle with area $\frac{25}{9} \pi$ touches the $x$ axis at the point 4,0 .

The point $T$ is the furthest point on the circle from the origin $O$.
Find the length of $O T$ giving your answer as a simplified fraction.
(9) The functions $g$ and $h$ are given by $g(x)=4 x^{-0.5}, x \geq 0$ and $h(x)=x^{0.5}-3, x \geq 0$.

The graphs $y=g(x)$ and $y=h(x)$ intersect at the point $A$.
The graph $y=h(x)$ crosses the $x$ axis at $B$.
Find the length of the line segment $A B$ giving your answer in the form $p \sqrt{q}$ where $p$ and $q$ are integers.

