www.m4ths.com - C2 -

Binomial Expansion

(1) Use Pascal's Triangle to
fully expand the following:
(a) $(x+2)^{3}$
(b) $(x-3)^{4}$
(c) $(2 x+1)^{3}$
(d) $(a+b)^{5}$
(e) $(3-p)^{5}$
(f) $(1+x)(x+4)^{3}$
(2) (a) Find the expansion of $(3+x)^{4}$.
(b) Hence find the expansion of
(i) $(3-x)^{4}$
(ii) $\left(3+y^{2}\right)^{4}$
(3) Find the value of the following:
(a) ${ }^{3} C_{2}$
(b) ${ }^{5} C_{3}$
(c) ${ }^{4} C_{1}$
(d) $\binom{7}{5}$
(4) Use the ${ }^{n} C_{r}$ method for finding coefficients to find the first 4 terms in the expansion of the following:
(a) $(1+2 x)^{6}$
(b) $(3-x)^{10}$
(c) $(2-3 x)^{8}$
(d) $(a-2 b)^{12}$
(e) $(2+x)(1-4 x)^{7}$
(5) (a) Expand fully $(1+2 x)^{5}$ in ascending powers of x.
(b) Hence write down the full expansion of $(1-2 x)^{5}$.
(c) Simplify $(1+2 x)^{5}+(1-2 x)^{5}$
(6) (a) Find the term in x^{5} in the expansion of $(5-x)^{12}$.
(b) Find the term in x^{7} in the expansion of $\left(1+\frac{x}{3}\right)^{9}$.
(c) Find the term in x^{18} in the expansion of $\left(0.5+x^{3}\right)^{13}$.
(7) Find the term in x^{3} in the expansion of $(3+2 x)(1-x)^{6}$.
(8) Find the term independent of y in the expansion of:
(a) $\left(y+\frac{1}{y}\right)^{6}$
(b) $\left(2 y-\frac{1}{y^{2}}\right)^{12}$
(9) The coefficient of the term in x^{2} in the expansion of $(3+p x)^{5}$ is 1080 . Given that $p>0$, find the value of p.
(10) Given that the coefficient of the term in x in the expansion of $(2+a x)^{4}$ is 12 , find the coefficient of the term in x^{3}.
(11) (a) Find the first four terms in the expansion of $(1+2 x)^{8}$. By using a suitable substitution for x and the answer found in part (a), approximate:
(b) $(1.01)^{8}$
(c) $(0.98)^{8}$
(Round each answer to 4 decimal places)
(d) Explain what would happen to the accuracy of your answer in parts (b) and (c) if you use (i) the first 3 terms and (ii) the first 7 terms instead of the first 4 terms found in part (a).
(12) Use the binomial expansion
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots$
to find the first 4 terms in the expansion of:
(a) $(1+2 x)^{9}$
(b) $(1-0.5 x)^{7}$
(c) $\left(1+\frac{x}{2}\right)^{6}$
(d) $(3-x)^{10}$
(e) $(1-5 x)^{\frac{1}{2}}$
(13) Given that $n>0$ and the coefficient of the term in x^{2} in the expansion of $(1+2 x)^{n}$ is 40 , find the value of n.
(14) Given that n and p are both positive integers and that
$(1+p x)^{n}=1+12 x+54 x^{2}+\ldots$, find the coefficient of the term in x^{3} in the expansion of $(1+p x)^{n}$.
(15) (a) Expand $(1+y)^{4}$ in ascending powers of y.
(b) Using your answer to part (a) and a suitable substitution, find the value of $(1+\sqrt{2})^{4}-(1-\sqrt{2})^{4}$ in the form $p \sqrt{2}$.
(16) Find, in fully factored form, the first 3 terms in the expansion of $(2+x)(1+p x)^{n}$ giving your answer in terms of n, p and x.
(17) (a) Find the first 4 terms in the expansion of $(1+3 x)^{6}$.
(b) By using a suitable value of x and your answer to part (a) to find an approximate value of $(1.03)^{6}$ correct to 5 dp .
(c) Find the percentage error between the approximation found in part (b) and the actual value of $(1.03)^{6}$.

