www.m4ths.com - C1 -

Discriminant

(1) State the conditions for the quadratic equation
$a x^{2}+b x+c=0$ to have:
(i) 2 distinct real roots.
(ii) A repeated root (equal).
(iii) No real roots.
(2) Sketch a graph of the
form $y=a x^{2}+b x+c$ given each
of the following conditions:
(i) $b^{2}-4 a c>0$ and $a>0$
(ii) $b^{2}-4 a c>0$ and $a<0$
(iii) $b^{2}-4 a c=0$ and $a>0$
(iv) $b^{2}-4 a c=0$ and $a<0$
(v) $b^{2}-4 a c<0$ and $a>0$
(vi) $b^{2}-4 a c<0$ and $a<0$
(3) Calculate the discriminant for the each the questions below and state the number of real roots to each equation:
(a) $x^{2}-3 x+5=0$
(b) $2 x^{2}+3 x-1=0$
(c) $-x^{2}+4 x-5=0$
(d) $0.5 x^{2}+2 x-3=0$
(e) $5 x^{2}+3 x-2=6$
(f) $2(x-1)^{2}=x+4$
(g) $x(x-3)=1-x$
(h) $(x-5)^{2}=0$
(4) In diagrams (1) and (2) the graphs of 6 different quadratic equations in the form $y=a x^{2}+b x+c$ are shown.
(a) For each graph state whether $b^{2}-4 a c$ is $0,>0$ or <0.
(b) For each graph write down whether $a>0$ or $a<0$.
(1)

(2)

(5) The equation
$k x^{2}-2 k x+1=0, k>0$
where k is a constant has equal roots. Find the value of k.
(6) The equation $x^{2}-3 p x+1=0$ where p is a constant has no real roots. Find the possible values for the constant p.
(7) The equation $x^{2}+2 q x+q=-12$ where q is a constant has two distinct real roots. Find the possible values of the constant q.
(8) Sketch a graph with
equation $y=a x^{2}+b x+c$ where
$a<0$ and $b^{2}-4 a c>0$.
(You do not have to state any points of intersection with coordinate axis).
(9) The diagram below shows part of the curve
$y=a x^{2}+b x+c$ where
a, b and c are constants.

(a) State the range of values of the constant a.
(b) State the range of values of $b^{2}-4 a c$.
(10) The line $y=m x-3$ is a tangent to the curve $y=x^{2}+3 x+1$.
(a) Find the possible values of m.
(b) Given $m>0$ find the point where the tangent touches the curve.
(11) The line $y=c-2 x$ where c is a constant is a tangent to the curve $y=\frac{2}{x}, x \neq 0$.
(a) Sketch the graph
of $y=\frac{2}{x}$ stating the equations of any asymptotes.
(b) Find the possible values of the constant c.
(c) Given $c<0$ sketch the graph of $y=c-2 x$ on a separate set of axis showing any points of intersection with the coordinate axis.
(12) $\mathrm{f}(x)=-x^{2}+4 x-7$
(a) Show the equation $-x^{2}+4 x-7=0$ has no real roots.
(b) Sketch the graph of $y=\mathrm{f}(x)$ stating the coordinates of the maximum point and the coordinates of the point where the curve cross the coordinate axis.
(c) Find the values of k such that $\mathrm{f}(x)+k$ has 2 distinct real roots.
(13) Given the x axis is a tangent to the curve
$y=2(x-3)^{2}+k$
(a) Write down the value of k.
(b) Sketch the curve showing any points where the curve touches or crosses the coordinate axis.
The discriminant of the equation $2(x-3)^{2}+p=0$ is 128.
(c) Find the value of p.

