## www.m4ths.com - C1 Differentiation

(1) Find $\frac{d y}{d x}$ for the following:
(a) $y=2 x$
(b) $y=3 x^{2}$
(c) $y=4$
(d) $y=5 x^{2}-3 x+1$
(2) Find $\frac{d s}{d t}$ for the following:
(a) $s=4 t^{3}$
(b) $s=2 t^{5}-3 t+1$
(c) $s=(t-1)(t+2)$
(3) Find $\mathrm{f}^{\prime}(x)$ for the following:
(a) $\mathrm{f}(x)=2 x^{\frac{1}{2}}$
(b) $\mathrm{f}(x)=5 x^{\frac{4}{3}}-x+7$
(c) $\mathrm{f}(x)=\frac{x^{2}-1}{x+1}$
(4) Find $\frac{d y}{d x}$ for the following:
(a) $y=\frac{x^{2}-3 x}{2 x}$
(b) $y=x \sqrt{x}-\frac{3}{x}$
(c) $y=3 x^{0.5}-3 x^{-2}+\frac{4}{x^{5}}$
(d) $y=x^{\frac{1}{2}}\left(3-2 x^{2}\right)+c$
(e) $y=\frac{x^{\frac{1}{2}}+5 x^{\frac{3}{4}}}{3 x}$
(f) $y=(1-\sqrt[3]{x})\left(2 x^{2}-3\right)$
(5) Find the gradient of the curve at the given point:
(a) $y=x^{2}+x$ at $x=3$
(b) $y=2 x^{3}-3 x^{2}+x$ at $x=1$
(c) $y=x^{5}-x^{4}+3$ at $x=-2$
(6) Find g' (4) giveng $(x)=2 x^{\frac{1}{2}}$
(7) Find the points on the curve $y=2 x^{3}-6 x^{2}+3 x$ where the gradient is $=21$.
(8) Find the gradient of the tangent to the curve
$s=4 t^{3}-\frac{1}{3 \sqrt{t}}$ at the point $\left(1, \frac{11}{3}\right)$
(9) Find the point where the tangent to the curve
$y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-12 x+3, x>0$ is parallel to the $x$ axis.
(10) Find the equation of the tangent to the curve
$y=x^{2}+4 x+3$ at the point where $x=1$ giving your answer in the form $y=m x+c$
(11) Find the equation of the tangent to the curve
$y=\frac{2 x-4}{\sqrt{x}}$ at the point where $x=4$ giving your answer in the form $a x+b y+c=0$.
(12) Find an equation of the normal to the curve
$s=4 t^{5}-3 t+1$ at the point where $t=1$.
(13) Find the equation of the normal to the curve
$y=x^{\frac{1}{2}}\left(x^{2}-3\right)$ at the point
where $x=4$ giving your answer in the form $y=m x+c$
(14) Find $\frac{d^{2} y}{d x^{2}}$ for each of the following:
(a) $y=3 x^{4}-5 x^{2}+1$
(b) $y=3 x^{\frac{3}{2}}-4 \sqrt{x}$
(c) $y=5 x\left(x^{2}-3\right)$
(d) $y=\frac{2 x^{3}-3}{x^{0.5}}$
(15) Find $f^{\prime \prime}$ (2) for the each of the following:
(a) $\mathrm{f}(x)=2 x^{3}-4 x^{2}+3 x$
(b) $\mathrm{f}(x)=4 x^{\frac{3}{2}}-5 x$
(16) The normal to the curve $y=x^{\frac{1}{2}}-3 x^{\frac{1}{4}}$ at the point where $x=1$ crosses the $x$ at $A$ and the $y$ axis at $B$. Find the area of the triangle $A O B$ where $O$ is the origin.
(17) The tangent to the curve $y=3 x^{2}+4 x+1$ at the point where $x=-1$ intersects the line $y=3 x-12$ at the point $P$.
Find the coordinates of $P$.
(18) Find the coordinates of the point on the curve
$y=x^{3}+2 x^{2}+x$
where $\frac{d^{2} y}{d x^{2}}=16$.
(19) Show that the point $(5,2)$ lies on the tangent to the curve $y=x(\sqrt{x}-1)$ at the point where $x=1$.
(20) Mike says that the $2^{\text {nd }}$ derivative of the function $\mathrm{f}(x)=x^{2}\left(2 x^{2}-3 x+4\right)$ will produce a linear function.
(a) Explain why he is wrong.
(b) Find the value of the $2^{\text {nd }}$
derivative at the point
where $x=0.5$.
(21) Find the value of $f^{\prime}(\sqrt{3})$
given $\mathrm{f}(x)=\frac{5 x^{6}+2 x^{4}}{x}$.
(22) The displacement of a particle ( $s$ ) can be modelled by the equation
$s=4 t^{3}+2 t^{2}+3 t-1$ for $t \geq 0$.
(a) Find the displacement of the particle after 2 seconds.
(b) Find the velocity and the acceleration of the particle at $t=1$.
(23) Show that if
$\mathrm{f}(x)=\frac{2}{3} x^{3}+x^{2}+2 x+3$
$\mathrm{f}^{\prime}(x)=0$ has no real solutions.

