www.m4ths.com - C1 -

Coordinate Geometry 1

(1) Find the gradient of the line passing through each set of points given below:
(a) $(2,1)$ and $(6,9)$
(b) $(4,7)$ and $(2,5)$
(c) $(-3,2)$ and $(2,-1)$
(d) $\left(\frac{1}{2}, 3\right)$ and $\left(\frac{3}{2} \cdot-\frac{3}{4}\right)$
(2) The gradient of the line passing through the points $(p, 5)$ and $(1,-7)$ is 4 .
Find the value of p.
(3) State the gradient and y intercept of the following lines:
(a) $y=3 x-1$
(b) $y=-2 x+5$
(c) $y=\frac{1}{2}-x$
(d) $y=3(2 x+1)$
(e) $y=-\frac{1}{3} x$
(4) The line $y=3 x+c$ passes through the point $(1,5)$. Find the coordinates where the line crosses the x axis.
(5) State the gradient and y intercept of the following lines:
(a) $8 x+4 y-3=0$
(b) $3 x-2 y+5=0$
(c) $5 x-6 y=4$
(d) $a x+b y+c=0$
(6) Find the equation of the straight line with the given gradient and point in the form $y=m x+c$:
(a) Gradient $=3$, point $(2,1)$
(b) Gradient $=-1$, point $(3,-2)$
(c) Gradient $=\frac{1}{4}$, point $(-8,2)$
(d) Gradient $=0.2, \operatorname{point}\left(5, \frac{1}{4}\right)$
(e) Gradient $=m$, point $(0, m)$
(7) Find the equation of the straight line passing through the given points in the form
$y=m x+c$:
(a) $(2,1)$ and $(4,5)$
(b) $(-1,5)$ and $(2,-3)$
(c) $(5,-7)$ and the origin.
(d) $\left(2, \frac{1}{3}\right)$ and $\left(4, \frac{2}{3}\right)$
(8) Find the equation of the straight line passing through the given points in the form
$a x+b y+c=0$:
(a) $(6,10)$ and $(4,6)$
(b) $(3,0)$ and $(0.5,4)$
(c) $(-3,0)$ and $(0,-3)$
(d) $(-1,-3)$ and $\left(2, \frac{1}{4}\right)$
(9) The line l has gradient 4 and crosses the x axis at the point $(3,0)$. Find where it crosses the y axis.
(10) The line l with gradient 3 passing through the point $(2,4)$ intersects the line $2 x-y=5$ at the point P. Find the coordinates of P.
(11) Find the distance between the two given points leaving your answer in exact form where appropriate:
(a) $(5,6)$ and $(1,3)$
(b) $(4,1)$ and $(10,9)$
(c) $(-1,-4)$ and the origin.
(d) $(-1,-1)$ and $(1,1)$
(e) $(5,3)$ and $(5,7)$
(12) Given the distance between the points $(p, 3)$ and $(4,1)$ is
$2 \sqrt{5}$ find the possible values of p.
(13) The distance between the points $(10, q)$ and $(q, 12)$ is 10 .
Find the possible values of q.
(14) Find the midpoint of the following pairs of coordinates:
(a) $(2,1)$ and $(6,9)$
(b) $(4,7)$ and $(2,5)$
(c) $(-1,5)$ and $(2,-3)$
(d) $(0.5,3)$ and $\left(\frac{1}{4},-\frac{1}{3}\right)$
(15) The midpoint of the points $(12,7)$ and $(p, 3)$ is $(5, q)$.
Find the values of p and q.
(16) Write down the gradient of a line (i) parallel to and (ii) perpendicular to the following lines:
(a) $y=3 x-1$
(b) $y=4-2 x$
(c) $x+y=0$
(d) $2 x+3 y=7$
(e) $p x-q y-4=0$
(17) Find an equation of the line (i) parallel to and
(ii) perpendicular to the
line $y=5 x+1$ that passes
through the point $(2,4)$.
(18) The perpendicular bisector of the line segment $A B$ crosses the x axis at the point P. Given the coordinates of A are $(2,1)$ and the coordinates of B are $(6,4)$ find the coordinates of the point P.
(19) The lines $x+3 y-4=0$ and $y=m x+2$ are perpendicular.
Find the value of m.
(20) Given the lines $p x+y=0$ and $2 y=3+5 q x$ are parallel express p in terms of q.
(21) The line l passes through the point $(-1,5)$ and is perpendicular to the line $2 x+4 y+7=0$. Line l meets the line $y=3 x+8$ at the point P.
Find the coordinates of P.

