$\underline{www.m4ths.com - C2 -}$

Logarithms and Exponentials

- (1) Write the following in the form $\log_a b = c$:
- (a) $2^3 = 8$
- (b) $7^2 = 49$
- (c) $4^2 = 16$
- (d) $3^{-2} = \frac{1}{9}$
- (e) $6^0 = 1$
- (f) $10^{-3} = 0.001$
- (g) $p^q = r$
- (2) Write the following in the form $a^b = c$:
- (a) $\log_5 25 = 2$
- (b) $\log_2 16 = 4$
- (c) $\log \frac{1}{10} = -1$
- (d) $\log_t s = r$
- (3) Evaluate the following without a calculator:
- (a) $\log_2 32$
- (b) $\log_5 5$
- (c) $\log_8 1$
- (d) log1000
- (e) log₉ 27
- (f) $\log_4 \frac{1}{64}$
- (g) $\log_8 \frac{1}{16}$
- (h) $\left(\log_{27}\frac{1}{81}\right)^2$
- (i) $\log_{0.5} \sqrt{16}$
- (4) Find the value of *x* in the following. Give your answers to 3 S.F where appropriate:
- (a) $\log_3 16 = x$
- (b) $\log_6 x = -2$
- (c) $\log_4 9 = x$
- (d) $\log_{\frac{1}{3}} x = -2$
- (e) $\log_{2.4} 13 = x$
- (f) $\log_4 x = -0.17$
- (g) $\log_{x} 16 = 2$

- (5) Simplify the following:
- (a) $\log_p p^2$
- (b) $3\log_{r} r^{5}$
- (c) $(\log_2 8) \times \left(\log_p \frac{1}{p}\right)$
- (6) Write the following in the form $a \log_b c$:
- (a) $\log_b c^4$
- (b) $3\log_b c^3$
- (c) $5\log_b \frac{1}{c}$
- (d) $0.25\log_b \sqrt{c}$
- (7) Write the following in the form $\log_b c^a$:
- (a) $2\log_b c^5$
- (b) $4\log_{b} \sqrt[3]{c}$
- (c) $-2\log_b \frac{1}{c^3}$
- (d) $0.75 \log_b c^{0.25}$
- (8) Rewrite the following as single logarithms:
- (a) $\log 2 + \log 3$
- (b) $\log_b a + \log_b c^2$
- (c) $2\log_b p + \log_b 5c$
- (d) $\log 5 \log 2$
- (e) $2\log 3 5\log 2$
- (f) $3\log_b p 2\log_b r$
- (g) $\log 3 + \log \frac{1}{9}$
- (h) $2\log a + 5\log b \log \sqrt{c}$
- (i) $0.5\log_8 x \log_8 3y + \log_8 \sqrt{x}$
- (9) Express the following in the form $\log a + \log b$:
- (a) $\log p^2 q$
- (b) $\log 2x^3$
- (c) $\log \frac{p}{r^4}$
- (d) $3\log p\sqrt{q}$
- $(e) -\log \frac{\sqrt[4]{p}}{q^{0.4}}$

- (10) Express the following in the form $a \log x + b \log y$:
- (a) $\log y^2 x^3$
- (b) $\log \frac{\sqrt{x}}{y^5}$
- (c) $3\log\left(\frac{y^{\frac{1}{6}}}{\sqrt[3]{x}}\right)$
- (11) Simplify the following:
- (a) $\log 8 + \log 12.5$
- (b) $\log_5 100 \log_5 4$
- (c) $\log_6 2 + \log_6 108 + 2\log_6 6$
- (d) $2\log_6 2 + \log_6 9$
- (e) $\log_2 80 \log_2 5 + 3\log_2 32$
- (12) Given $\log_2 p = a$ and

 $\log_2 q = b$, simplify the following giving your answers in terms of a and b:

- (a) $\log_2 pq^2$
- (b) $\log_2 \frac{8q}{p}$
- (c) $0.5\log_2\sqrt{32p^3q^4}$
- (13) Solve the following giving your answers to 3 S.F:
- (a) $3^x = 14$
- (b) $5^{x-1} = 9.4$
- (c) $2 \times 6^{2x+3} = 3.4$
- (d) $2^{1-3x} + 3.1 = 9.7$
- (14) Solve the following giving your answers to 3 S.F:
- (a) $3^{x-1} = 2^{x+2}$
- (b) $5^{2x-3} = 7^{x+1}$
- (c) $7 \times 5^{2x-3} = 7^{x+1}$
- (d) $10 \times 7^{x-3} = 9^{x+1}$
- (15) Solve the following equations giving your answers to 3 S.F where appropriate:
- (a) $3^{2x} 3^x 2 = 0$
- (b) $2^{2x} = 7(2^x) 12$
- (c) $6(4^{2x})+13(4^x)=5$
- (d) $2^{2x+1} 1 = 2^x$

(16) Solve the following equations giving your answers to 3 S.F where appropriate:

(a)
$$\log_2(x-4) = 3$$

(b)
$$\log_3(2x-1) = \log_3(x+1) + 2$$

(c)
$$\log_2(x) = 4 - \log_2(x+6)$$

(d)
$$\log_4(x-1) = 1.7 - \log_4(x+2)$$

(e)
$$2\log_5(x+1) = \log_5(x+2) + 1.9$$

(f)
$$2\log_2(x-3) = \frac{3}{\log_2(x-3)}$$

(17) Solve the following equation giving your answers to 3 S.F where appropriate:

$$\log_2(2x-1) = \log_4(x+3) + 0.5$$

(18) Solve the simultaneous equations:

$$\log_2\left(\frac{x}{y^2}\right) = -3$$

$$3\log_8\left(4x\sqrt{y}\right) = 4$$

(19) Sketch the following graphs stating the coordinates of any points of intersection with the coordinate axis and the equations of any asymptotes:

(a)
$$y = 2^x$$

(b)
$$y = 5^x$$

(c)
$$y = \left(\frac{1}{2}\right)^x$$

(d)
$$y = 3^{x-1}$$

(e)
$$y = 4^x + 2$$

(f)
$$y = 1 - 2^x$$

(20) Given that $\log_5 p = a$ and $\log_5 q = b$, find an expression in terms of a and b for:

$$2\log_5\left(\frac{p^3}{25\sqrt{q}}\right)$$

(21) Show there is only one real solution to the equation $\log_4(x+5) = 1.5 - \log_4(x-2)$ and find the solution to the equation.

(22) (a) Sketch the graphs of $y = 2^{x-1}$ and $y = 0.5^x$ on the same set of axis showing any points of intersection with the coordinate axis and state the equation of any asymptotes. (b) Solve the equation $2^{x-1} = 0.5^x$ (c) State fully the two transformations that map the curve $y = 0.5^x$ onto the curve $y = 3 - 0.5^x$.