(1) Use the sine rule to find the value of \(x \) in each of the triangles below:

(2) In triangle \(ABC \), \(AB = 10\, cm \), \(BC = 6\, cm \) and \(\angle BAC = 35^\circ \). Find the two possible sizes of \(\angle ACB \) giving you answer to 3 significant figures.

(3) Use the cosine rule to find the value of \(x \) in each of the triangles below:

(4) Find the value of \(x \) and \(y \) in the triangle below giving each answer to 3 significant figures.

(7) Fred is standing at a point looking north. He walks on a bearing of \(056^\circ \) for 9.8\, km before stopping. He then walks an additional 3.5\, km on a bearing of \(112^\circ \) before stopping again. Find out how far he is away from his starting point.

(8) Sue walks around the perimeter of a triangular field. She walks west from one corner of the field for 480\, m before stopping at the second corner. She then walks an additional 312\, m on a bearing of \(072^\circ \) to complete the second side of the field.
 (a) How long is the third side of the field?
 (b) Find the total area of the enclosed field.

(9) The diagram below shows a square with a triangle attached to one side. The triangle and the square share one side length. Given that the area of the square is \(249\, cm^2 \), find the area of the triangle as a percentage of the area of the square. Round your answer to the nearest one percent.

(10) Below is a picture of the isosceles trapezium \(ABCD \). The line \(BX \) is perpendicular to the line \(DC \), \(\angle BAX = 43^\circ \) and \(\angle ADX = 79^\circ \).
 (a) Find the length of the line \(AX \).
 (b) Find the area of \(\triangle ADX \).
 (c) Find the area of the quadrilateral \(ABCX \).