<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) The definition of appreciation is...</td>
<td>Appreciation and Depreciation LO – Understand and apply basic without using compound interest</td>
</tr>
<tr>
<td>(2) The definition of depreciation is...</td>
<td>Increase or decrease you can use the formula without using compound interest</td>
</tr>
</tbody>
</table>
| (3) To find the percentage increase or decrease you can use the formula without using compound interest | ** Formula**<br>\[
\text{Percentage change} = \frac{\text{New value} - \text{Original value}}{\text{Original value}} \times 100%
\]
| (4) The value of a boat increases by... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 + \text{rate of increase/decrease})^n
\]
| (5) A car depreciates by 10% in the... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 - \text{rate of depreciation})^n
\]
| (6) Explain why 10% depreciation... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 - \text{rate of depreciation})^n
\]
| (7) A painting is purchased at... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 - \text{rate of depreciation})^n
\]
| (8) A gold ring increases in value... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 + \text{rate of increase})^n
\]
| (9) The cost of wine has fallen from... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 - \frac{\text{percentage change}}{100})^n
\]
| (10) Which has more value after 2... | ** Formula**<br>\[
\text{New value} = \text{Original value} \times (1 + \text{rate of increase/decrease})^n
\]