
www.m4ths.com

9-1 GCSE Maths Foundation & Higher Help & Revision Booklet

Springwood High School Copy - September 2016 Version

Suitable for Edexcel, AQA & OCR. The topics in *italics* are those on the Higher Tier <u>only</u>. Click on the topics for video tutorials Click for a worksheet. Formulae in <u>shaded text</u> are those <u>NOT</u> given in the exam formula booklet. You need to learn them!

Name	Class	Targ	et Grade	123	3 4 5	56	78	, 9

Number

Topic/Skill	Tips/Facts	Example
Integers 🗎	An integer is a whole number . It can be positive or negative.	Integers: 2, 5,100, 6345 Non Integers: ¼, 12.3, 0.76
Square Number	When you × a number by itself you get a square number. This number has to be	The first 6 square numbers are: 1, 4, 9, 16, 25, 36
	an integer. Squaring a number is NOT the same as multiplying a number by 2.	(a) $3^2 = 3 \times 3 = 9$ (NOT 6) (b) $5^2 = 5 \times 5 = 25$
Square Roots	This is the inverse (reverse process) of squaring a number. $\sqrt{\ }$ is used. (a) $6^2 = 36$ so $\sqrt{36} = 6$ (b) $9^2 = 81$ so $\sqrt{81} = 9$.	(a) $\sqrt{49} = 7$ (b) $\sqrt{121} = 11$ (c) $\sqrt{\frac{25}{4}} = \frac{\sqrt{25}}{\sqrt{4}} = \frac{5}{2}$
Cube Number/Roots	A number multiplied by itself three times . (The cube root $\sqrt[3]{}$ is the inverse).	(a) $4^3 = 4 \times 4 \times 4 = 64$ (NOT 12) (b) $2^3 = 8$ (NOT 6)
A Prime Number	A number that has only 2 factors, itself & 1 . 2 is the only even prime number.	2, 3, 5, 7, 11, 13, 17, 19 (1 is not a prime number!)
Rational and Irrational Numbers	Rational numbers can be written in the form $\frac{a}{b}$ where a and b are integers and	Rational: 2, 0.4, $\frac{1}{3}$, 0.7, $\sqrt{36}$, -1.2, $4\frac{1}{5}$
	Irrational numbers can't! Surds, and π are examples of irrational numbers.	Irrational: $\sqrt{3}$, π , $5\sqrt{7}$, e
Reciprocal	The reciprocal of a number is 1 divided by that number. Often it's easier to think about turning the fraction upside down (inverting the fraction).	The reciprocal of 5 is $\frac{1}{5}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$
<u>Factors (Divisors)</u>	The integers (whole numbers) that go into a number with no remainder.	Factors of 8 are 1,2,4 & 8 Factors of 12: 1,2,3,4,6 &12
Multiples	Think Times Tables. Just write out the times tables for that number.	The first six multiples of 4 are 4, 8, 12, 16, 20 and 24
Product of Prime Factors	Numbers can be made up by multiplying prime numbers . (2,3,5,7,11,13,17) To find the Product of Primes start with a factor tree . (Shown to the right) Product means multiply so don't forget to put the × sign in between the numbers you found in your factor tree. If you are struggling with the factor tree just keep trying to divide by the prime number in order. Does it divide by 2? If so pick 2. If it doesn't divide by 2 does it divide by 3? By 5? By 7? By 11? Etc.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
HCF (Highest	The HCF is the largest number that goes into 2 or more different numbers.	Example: "Find the HCF of 8 and 28"
Common Factor)	Method 1 : Just list the factors of each and find largest number in each list	Method 1 : Factors of 8: 1,2,4 & 8 Factors of 28:
	Method 2 : Using Factor tree. Take only the prime numbers that appear in each	1,2, 4 ,7,14 & 28. The HCF of 8 and 28 is 4
	list of the factors of the numbers to their lowest power and multiply. This	Method 2: Product of Primes for 8 and 28:
	method is better for less obvious examples and larger numbers.	$8 = 2^3$ and $28 = 2^2 \times 7$ so you only have 2 in both lists
	(You can use a Venn Diagram to do this too.)	and you take it to the lowest power giving $2^2 = 4$
LCM (Lowest	The lowest (or smallest) number that 2 or more different numbers go in to.	Example: "Find the LCM of 4 and 6"
Common Multiple)	Method 1 : Just list out the times tables of each number and see which is the	Method 1:
	lowest number that appears in both lists. This is the LCM	Multiples of 4: 4, 8, 12 , 16, Multiples of 6: 6, 12 , 18
	Method 2 : Using Factor tree. Take all the prime numbers that appear in each	The LCM of 4 and 6 is 12.
	list of the factors to their highest power and multiply.	Method 2 : Product of Primes for 4 and 6:
	(You can use a Venn Diagram to do this too.)	$4 = 2^2$ and $6 = 2 \times 3$. You need both 2 and 3 to their
	Common misconception: The LCM of 2 numbers is 1. This is incorrect!	highest power giving $2^2 \times 3 = 12$.

Page 1 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Rounding to 1 DP (Decimal Place)	You are rounding the number to the nearest 10th . Focus on the 2 nd number after the decimal point. If it's 5 or more round up. If it's 4 or less round down.	(a) 2.43 = 2.4 (3 is less than 5) (b) 5.67 = 5.7 (c) 1.09 = 1.1 (9 is more than 5) (d) 2.98 = 3.0
Rounding to 2 DP	Nearest 100 th . As above but focus on the 3 rd number after the decimal point.	(a) $3.562 = 3.56$ (b) $0.785 = 0.79$ (c) $1.499 = 1.50$
Rounding to 1 SF	When reading a number from left to right the first value that is not 0 in the	(a) 243 to 1 SF = 200 (Rounding to the nearest 100)
(Significant Figures)	number is the 1 st significant figure. Round the number using the same	(b) 5.6 to 1 SF = 6 (Rounding to the nearest integer)
	techniques as used for decimals shown above. With the number 0.043 the 4 is	(c) 47 to 1 SF = 50 (Rounding to the nearest 10)
	the first significant figure, 3 is the second.	(d) 0.48 to 1 SF = 0.5 (Rounding to the nearest 10^{th})
Rounding to 2 SF	Same as before but now it's the second significant figure. Mind the 0's!	(a) $243 = 240$ (b) $40.8 = 41$ (c) $0.546 = 0.55$
Estimations &	Round each number to 1 significant figure & perform the calculation. You must	(a) 98×51.2 becomes 100×50 which = 5000
<u>Approximations</u>	show workings! Estimating doesn't require the exact value. It's non calculator!	(b) 4.6 + 104.7 becomes 5+100 which = 105
Calculations using	Sometimes you will get a question where the numbers or measurements given	E: A rectangle has one side length of 6cm correct to
<u>Upper and Lower</u>	have already been rounded. You just need to work out the minimum (Lower	the nearest cm and an area of 24.3cm ² correct to 3SF.
<u>Bounds</u>	Bound) and maximum (Upper Bound) the number could be. One way to think	Find the greatest possible length of the missing side. A:
	of it is to half the interval given subtract it from the number to find the LB and	IIR Area
	then add it to the number to get the UB. An example could be 1.4 rounded to	$LB UB Max Legth = \frac{UB Area}{LB Length}$
	one d.p. one d.p = 0.1 . If you half this you get 0.05 . This gives us a lower bound	
	of 1.35 and an upper bound of 1.45. When you have done this work out which	5.5
	values are required to minimise or maximise the calculation.	Area 24.25 24.35 = 4.427
Intervals and Bounds	You may be asked to interpret or use inequalities for upper and lower bounds.	Example: The height of a plant is 1.8m correct to 2
and	If a number has already been rounded, you may be asked to find the upper and	significant figures. Write an inequality to show this.
Error Intervals	lower bounds of it. One way to do this is to split the interval in half and + this	Answer: $1.75 \le h < 1.85$
	amount on to the value to get the upper bound and - it for the lower bound.	Be Careful with the inequality sign on the upper bound.
Fractions to	Some are obvious such as 3/4 is 0.75. For those that are not simply divide the	(a) $1/8 = 0.125$ (b) $3/10 = 0.3$
<u>Decimals</u>	numerator by the denominator using short division OR SD on your Casio.	(c) $7/100 = 0.07$ (d) $43/100 = 0.43$
	Common error! 1/3 is not 0.3. £1 shared between 3 people is not 30p each.	(e) $28/1000 = 0.028$ (f) $37/50 = 74/100 = 0.74$
Decimals to	Some are obvious such as $0.5 = \frac{1}{2}$ or $0.75 = \frac{3}{4}$ and $0.1 = \frac{1}{10}$ etc.	(a) $0.7 = 7/10$ (b) $0.23 = 23/100$
<u>Fractions</u>	If it's not obvious write it as a fraction over 10, 100 or 1000 and cancel down.	(c) $0.46 = 46/100 \text{ or } 23/50$
% to Decimals	To convert a % to a decimal ÷ by 100. To convert a decimal to a % × by 100	(a) $0.23 \times 100 = 23\%$ (b) $47\% \div 100 = 0.47$
Fractions to	A % is just a fraction out of 100. Non calculator just 'scale' the denominator up	(a) Non Calc $\frac{3}{25} = \frac{12}{100} = 12\%$ (b) Calc $\frac{9}{17} \times 100 = 52.9\%$
<u>Percentages</u>	to 100 with equivalent fractions. On a calculator just \times the fraction by 100.	25 100 17
Simplifying	If they are not obvious like $\frac{5}{10} = \frac{1}{2}$ look for common factors to divide by.	(a) $\frac{6}{9} = \frac{3}{4}$ (divide by 2) (b) $\frac{20}{95} = \frac{4}{5}$ (divide by 5)
<u>Fractions</u>	If they are not obvious like $\frac{1}{10} = \frac{1}{2}$ look for confinion factors to divide by.	(a) $\frac{6}{8} = \frac{3}{4}$ (divide by 2) (b) $\frac{20}{35} = \frac{4}{7}$ (divide by 5)
Mixed Numbers	See how many times the denominator goes into the numerator. This gives you	(a) $\frac{9}{4} = \frac{4}{4} + \frac{4}{4} + \frac{1}{4} = 2\frac{1}{4}$ (b) $\frac{17}{5} = 3\frac{2}{5}$ (c) $\frac{5}{3} = 1\frac{2}{3}$
	the integer part and then just write the remainder over the original denominator.	4 4 4 4 4 5 5 3 3
Ordering Fractions	Find the common denominator of the fractions given, write equivalent fractions	Order: $\frac{3}{2}, \frac{2}{5}, \frac{5}{1}$ equiv $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ so $\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{12}$
	for each and simply order the fractions by the numerators. You must use the	Order: $\frac{3}{4}, \frac{2}{3}, \frac{3}{6}, \frac{1}{2}$ equiv $\frac{3}{12}, \frac{10}{12}, \frac{10}{12}, \frac{3}{12}$ so $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{3}{6}$
	original fractions in your answer. Ascending means smallest to largest.	

Page 2 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Finding a Fraction of a Quantity	'Divide by the bottom, times by the top'. If you need 3/8 of a number, divide the number in the question by 8 then multiply the answer by 3. Alternatively, use a calculator. In maths 'of' means multiply so you can just type the calculation in as shown on the right. Just × the fraction by the quantity.	Example: "Find 2/5 of £60" Answer: Start with £60 ÷ $5 = £12$. Now simply multiply by two. $2 \times 12 = £24$. You could have simply done $\frac{2}{5} \times 60$ instead to give 24
Adding Fractions Adding Mixed Numbers	You must have a common denominator to add fractions. When you do, simply add the numerators. Use equivalent fractions to find common denominators. Whatever you do to the bottom, do to the top! If you have forgotten! Numerator = top, Denominator = bottom.	(a) $\frac{1}{5} + \frac{3}{5} = \frac{4}{5}$ (b) $\frac{2}{5} + \frac{3}{10} = \frac{4}{10} + \frac{3}{10} = \frac{7}{10}$ (c) $\frac{4}{5} + \frac{2}{3} = \frac{12}{15} + \frac{10}{15} = \frac{22}{15}$ (d) $\frac{3}{2} + \frac{2}{7} = \frac{21}{14} + \frac{4}{14} = 1\frac{11}{14}$
Subtracting Fractions Subtracting Mixed Numbers	You must have a common denominator to subtract fractions. When you do, simply subtract the numerators. Use equivalent fractions to find common denominators. Please note: You can cross multiply when adding and subtracting fractions although it's a long way round for some examples.	(a) $\frac{4}{5} - \frac{1}{5} = \frac{3}{5}$ (b) $\frac{4}{5} - \frac{1}{10} = \frac{8}{10} - \frac{1}{10} = \frac{7}{10}$ (c) $\frac{3}{4} - \frac{2}{3} = \frac{9}{12} - \frac{8}{12} = \frac{1}{12}$ (d) $\frac{2}{7} - \frac{5}{6} = \frac{12}{42} - \frac{35}{42} = -\frac{23}{42}$
Multiplying Fractions	Multiply the numerators and multiply the denominators and simplify. You can cancel common factors at the start. You do not need a common denominator.	(a) $\frac{3}{5} \times \frac{4}{7} = \frac{12}{35}$ (b) $\frac{1}{8} \times \frac{4}{9} = \frac{4}{72} = \frac{1}{18}$ (simplified)
Dividing Fractions Multiplying & Dividing Mixed Numbers	Invert (turn upside down) the 2^{nd} fraction and multiply (as shown above). "Dividing by a fraction is the same as multiplying by its reciprocal" You do not need a common denominator unlike adding or subtracting. How many halves of pizza can you cut from a whole pizza? $1 \div \frac{1}{2} = 2$ of course!	(a) $\frac{1}{8} \div \frac{4}{9}$ is the same as $\frac{1}{8} \times \frac{9}{4} = \frac{9}{32}$ (b) $\frac{3}{4} \div \frac{5}{6}$ is the same as $\frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$ (simplified)
Finding 10%, 5%, 1% of a quantity	To find 10% without a calculator just divide the original number by 10, to find 1% divide it by 10 again. 5% is half of 10%, 2.5% is half of that!	£36: $10\% = £3.60 5\% = £1.80 \text{and} 1\% = £0.36 \text{or} 36p$ From this you could get $11\% = £3.96, 12\%, 16\%$ etc.
Finding a Percentage of a Quantity using a Calculator	For harder examples just type it into a calculator. Remember, 'of' in maths means multiply. Percentage means out of 100 so you can just type the percentage in as a fraction over 100 and × by the quantity.	E: Find 23% of 327.5 A: $\frac{23}{100} \times 327.5 = 75.325$ There is a % button on the Casio too. See the tutorial!
Increase or Decrease by a %	Find the % required (see above) and add it on (increase) or take it off (decrease) If it's a calculator question just multiply the quantity by the %	E: Increase £30 by 10% A: 10% = £3 so 30+3 = £33 E: Decrease 20 by 40% A: 10% = 2,40% = 8, 20-8=12
Writing one Number as a % of Another	Write the 1 st number over the 2 nd as a fraction and \times your answer by 100. It could help thinking as these like test scores. 7 as a % of 24 is $7/24 \times 100$.	Example: Write 12 as a % of 31. A: $\frac{12}{31} \times 100 = 38.7\%$
Percentage Change	You are looking at the increase or decrease as a % of the original value. 'Difference divided by the original and multiplied by 100.' Example: A painting was bought for £200 & sold for £250. Find the % increase in its value.	Answer: $\frac{50}{200} = 25\%$ increase in value
Reverse Percentage	You are working out the value BEFORE the % increase or decrease. Use multipliers (some shown), set up an equation & solve working backwards. 1% increase 1.01 1% decrease 0.99 5% increase 1.05 10% decrease 0.90	Example: A jumper was priced at £48.60 after a 10% reduction. Find its original price. $J \times 0.9 = 48.60$
	10% increase 1.10 25% off 0.75 25% increase 1.25 40% of original value 0.40 Do not just find the % of the value in the question and take it off or add it!	Answer: $J = 48.60 \div 0.9$ (The jumper was £54) J = 54

Page 3 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Growth and Decay	Find the starting quantity, × this by the multiplier to increase or decrease the quantity and raise that to the required power. See worked example! The multiplier for growth will be greater than 1, for decay less than 1.	E: A bank pays 5% compound interest a year. Bob invests £3000. How much will he have after 7 years? Answer: $3000 \times 1.05^7 = 4221.3012$ (about £4221.30)
Exponential	Exponential graphs can be used to model growth and decay. Exponential graphs	Growth $a > 1$ Decay $0 < a < 1$
Functions and their	can be written in the form $y = a^x$. They are curves! If $a > 1$ you get growth.	$y = 5^{x} / y = 2^{y}$ $y = 0.5^{x} $ 6
<u>Graphs</u>	If $0 < a < 1$ you have decay. In 'real life situations these graphs may be written	
	as $y = ab^x$. An example could be the value of a car: $P = 25000 \times 0.92^t$. This	4 / 4
	simply models the price of a car with a 'new cost' of £25000 which is losing	
	8% a year. An investment could be represented by $I = 4000 \times 1.03^n$. This just	2
	shows an initial investment of £4000 and a compound rate of 3% over n years.	
Simple and	Simple Interest: Interest calculated on ONLY the original investment.	Example: Simple interest at 3% on £1000 over 4 years
Compound Interest	Compound Interest: Interest is calculated on BOTH the original investment	will give: $4 \times £30 = £120$. This gives a total investment
	and any interested gained over time. (This as interest on interest which is better)	of £1120. Compound Interest at 3% on £1000 over 4
	Be careful with two step calculations with different rates for different periods.	years gives: $1000 \times 1.03^4 = £1125.51$
VAT	VAT is just 'Value Added Tax' and is a tax added to some of the goods and	Example: A car is priced at £2000 before tax. Find the
	services we buy. The current rate for VAT in the UK is 20%	price after VAT has been applied at 20%:
	All you need to do is find 20% and add it on or just use the multiplier 1.2.	Answer: £20000×1.2 = £24000 (You can find 20%
	Careful! If the price already includes tax divide by 1.2 to find the pre VAT cost	and add it on if you don't want to use a multiplier)
Negative Numbers	If you are either multiplying or dividing with negative numbers and the signs	(a) $-2 \times 4 = -8$ (b) $-3 \times -5 = 15$
(× and ÷)	are the same the answer is positive , if they are different the answer is negative .	(c) $3 \div -3 = -1$ (d) $-16 \div -4 = 4$
Negative Numbers	Adding a negative decreases the value. Subtracting a negative increases the	(a) $2-4=-2$ (b) $35=8$
(+ and -)	value. Start on a number line and either move up of down from your start point.	(c) $-2 + -5 = -7$ (d) $-45 = 1$
BODMAS/BIDMAS (Order of	Brackets then Powers (BO/BI) comes first. Multiplication then Division (DM) comes next.	(a) $3 + 4 \times 2 = 11$ (do the multiplication first) (b) $3 + (4+1)^2$ Brackets: (5) $^2 = 25$ and then add $3 = 28$
Operations)	Addition then Subtraction (AS) comes last.	(c) $12 \div 0.5 - 3 = 21$ (division first!)
Multiplying	Method 1: Count the total digits after the decimals at the start. The number	Example: 0.4×0.2 (2 digits after the decimals in total)
Decimals	you start with is the number you finish with. You may have to add 0's.	$4 \times 2 = 8$ so my answer is 0.08 as I need to finish with
	Method 2: Consider place value. Tenths \times Tenths = Hundredths.	2 digits after the decimals. $0.3 \times 0.15 = 0.045$
Dividing by a	Simply multiply both numbers by powers of 10 until the decimal you are	(a) $4 \div 0.2 = 40 \div 2 = 20$ (b) $6 \div 0.03 = 600 \div 3 = 200$
Decimal	dividing by is an integer. At this point simply divide the numbers.	(c) $1.5 \div 0.3 = 15 \div 3 = 5$ (d) $18 \div 0.06 = 1800 \div 6 = 300$
Standard Form	The number must be between 1 and 0.0 and multiplied by a newer of ten	(a) $8400 = 8.4 \times 10^3$ (b) $671000 = 6.71 \times 10^5$
	The number must be between 1 and 9.9 and multiplied by a power of ten. + powers of 10 for 'large numbers' and – powers of 10 for 'small numbers'	(c) $0.00036 = 3.6 \times 10^{-4}$ (d) $0.097 = 9.7 \times 10^{-2}$
Calculating With	When multiplying numbers in SF, multiply the numbers and add the powers.	
Standard Form	When dividing numbers in SF, divide the numbers and subtract the powers.	(a) $(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
	Make sure your answer is in standard form. You may need to adjust at the end	(b) $(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
	as shown in example (c) to the right. The initial answer is not in standard form.	(c) $(4.1 \times 10^6) \times (3 \times 10^9) = 12.3 \times 10^{15} = 1.23 \times 10^{16}$

Page 4 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Surds (Simplifying)	$\sqrt{36}$ is a rational number as it is 6. Surds are irrational square roots. $\sqrt{2}$ is an example of a surd and we say it's an 'exact value'. Its answer is a nonterminating (keeps going!), non-recurring (its decimal part doesn't repeat) decimal. Don't be tempted to write a surd as a decimal or round it, just leave it in exact form. When simplify surds look for the largest square number that goes into the surd (highest square factor), split the roots and simplify. Example: Simplify $\sqrt{12}$. The largest square number that goes into 12 is 4. You can write $\sqrt{12}$ as $\sqrt{4 \times 3}$. Using the rules shown below $\sqrt{4} \times \sqrt{3}$ giving $2 \times \sqrt{3} = 2\sqrt{3}$.	(a) $\sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$ (b) $\sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$ (c) $\sqrt{108} = \sqrt{36 \times 3} = \sqrt{36} \times \sqrt{3} = 6\sqrt{3}$ (d) (In reverse) $5\sqrt{3} = \sqrt{25} \times \sqrt{3} = \sqrt{25 \times 3} = \sqrt{75}$ NB: \sqrt{x} and $x^{\frac{1}{2}}$ are equivalent if you are working with both surds and the rules of indices.
Surds (Multiplying and Dividing)	Here are the rules! (1) $\sqrt{a} \times \sqrt{a} = a$ (2) $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (3) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ Make sure you simplify your answer! $\sqrt{2} \times \sqrt{12} = \sqrt{24} = 2\sqrt{6}$ for example.	(a) $\sqrt{3} \times \sqrt{3} = 3$ (b) $\sqrt{3} \times \sqrt{6} = \sqrt{18} = 3\sqrt{2}$ (c) $4\sqrt{3} \times 2\sqrt{5} = 8\sqrt{15}$ (d) $\frac{\sqrt{10}}{\sqrt{2}} = \sqrt{\frac{10}{2}} = \sqrt{5}$ (a) $3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}$ (b) $9\sqrt{5} - 6\sqrt{5} = 3\sqrt{5}$
Surds (Adding and Subtracting)	You can only add and subtract like surds. In algebra $a + 2a = 3a$. This is true for surds. $\sqrt{5} + 2\sqrt{5} = 3\sqrt{5}$. Sometimes you may have to simplify first!	(a) $3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}$ (b) $9\sqrt{5} - 6\sqrt{5} = 3\sqrt{5}$ (c) $5\sqrt{2} - \sqrt{8} = 5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$ (Just simplify $\sqrt{8}$)
Surds (Rationalising the Denominator)	A surd is an irrational number, so if you have a surd in the denominator you rationalise the denominator. This will leave an integer value in the denominator. Scenario 1: No + or – sign in the denominator. In this case simply multiply the numerator and the denominator by the surd and simplify. (see Example 1) Scenario 2: A + or – sign in the denominator and 2 numbers (at least one being a surd). Simply multiply the numerator and the denominator to create the difference of two squares. To rationalise swap the sign between the two values in the denominator. You will need to simplify your answer. (see Example 2)	Example 1: $\frac{5}{\sqrt{2}} = \frac{5 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{5\sqrt{2}}{2}$ Example 2: $\frac{7}{5 + \sqrt{3}} = \frac{7 \times (5 - \sqrt{3})}{(5 + \sqrt{3}) \times (5 - \sqrt{3})} = \frac{7(5 - \sqrt{3})}{25 - 5\sqrt{3} + 5\sqrt{3} - 9} = \frac{7(5 - \sqrt{3})}{16}$
Converting Recurring Decimals into Fractions B	You know, for example, $\frac{1}{3} = 0.3$, but what if you were asked to write 0.4 as a fraction without a calculator? All you need to do is set up & solve an equation: Let $x = 0.4$. Simply multiply x by powers of 10 until the pattern after repeats, subtract away, solve the equation & simplify if necessary. Here is the worked answer: $x = 0.4$ so $10x = 4.4$. Now subtract to give $10x - x = 4.4 - 0.4$. This will give $9x = 4$ and finally simply solve the equation to write $x = \frac{4}{9}$. Be very careful to check how many digits recur after the decimal. Example (a) and (b) differ. In (a) both the 2 and the 3 repeat. In (b) only the 5 repeats. Look out for the dots! Be careful as, for example, $0.215 = 0.216216216$ The dots mark the start and the end of the pattern and, of course, the 1 repeats.	(a) Write $0.\overline{23}$ as a fraction in its simplest form. Let $x = 0.\overline{23}$, now $10x = 2.\overline{32}$ now go to $100x = 23.\overline{23}$. The pattern matches for $x & 100x$ so subtract away: $100x - x = 23.\overline{23} - 0.\overline{23}$ so $99x = 23$ and $x = \frac{23}{99}$ (b) Write 0.15 as a fraction in its simplest form. Let $x = 0.15$, now $10x = 1.5$ and $100x = 15.5$. The pattern matches for $10x & 100x$ so subtract away: $100x - 10x = 15.5 - 1.5$ so $90x = 14$ and $x = \frac{7}{45}$ (Make sure you fully simplify your final answer)

Page 5 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Ratio, Proportion and Rates of Change

Simplifying Ratio	Simplify them like fractions by dividing by common factors if it's not obvious.	(a) 5:10 is 1:2 in its simplest form (b) 14:21 is 2:3
Ratios in the form	Divide both numbers in the ratio by one of numbers to leave one of them as 1.	• • • • • • • • • • • • • • • • • • • •
1: n / n : 1	Be careful when it comes to which way round the answer must be! $1:n$ or $n:1$	5:7 would be 1: $\frac{7}{5}$ as 1: $n \div 5$ (÷ by 5) & $\frac{5}{7}$:1 as $n:1(\div 7)$
Ratio Sharing	Add the total parts. A ratio of 4:2:1 has 7 parts (not 3 parts as 4 + 2 + 1 = 7)	"Share £60 in a 3:2:1 ratio" 6 total parts. £60 divided
	Divide the amount to be shared to find the value of one part . Simply multiply	by $6 = £10$. Each part is worth £10
	this value by the each number in the ratio. Remember the units if applicable!	$3 \times £10 = £30$ $2 \times £10 = £20$ $1 \times £10 = £10$
Ratios Already	Sometimes a ratio is already shared and you will need to work backwards.	Example: Money was shared in the ratio 3:2:5 between
Shared	Simply find what one part is worth and then answers the questions given. The	Ann, Bob and Cat. Given that Bob had £16, find out
	question will give you the clue to which quantity you are dividing. In these	how much was shared. A: Bob has 2 parts. This means
	questions just think (for example) "3 parts is worth £12, so 1 part must be worth	£16 = 2 parts. One part will be worth £8. There are 10
	£4" and then use this information to answer the question.	parts in total so $10 \times 8 = £80$. A total of £80 was shared.
Ratios to Fractions	Add the total parts in the ratio. This becomes the denominator of the fractions.	Example: 2:3 has 5 parts so this would be $\frac{2}{5}$ and $\frac{3}{5}$.
	Simply write each part over that denominator. You should now be able to	Example: 2:3 has 5 parts so this would be $-$ and $-$.
	convert to decimals too either by simplifying or pressing SD on the calculator.	
Ratios to %	Write the ratios as fractions (as shown above) and then convert them into %	Example: 2:3 would be 40% and 60% when shared
Best Buys	Find the unit cost by dividing the price by the quantity . The lowest number is	8 cakes for £1.28= 16p each (this is the unit cost)
	the item that is the best buy. Be careful and don't round the price too early!	13 cakes for £2.05= $15.8p$ each (so pack of 13 is better)
Basic Proportion	Find out the value of one item by dividing and then multiply your answer by	Example: 3 cakes require 450g of sugar to make. Find
	the number of them you need. Some of these are recipe type questions and	how much sugar 5 cakes require.
	others are just shopping type scenarios. Just find the cost, weight or size of 1	Answer: $450 \div 3 = 150$ g per cake. Now multiply this
	and then multiply up. Using the units given may help you understand more.	by 5 to give 750g required for 5 cakes.
Exchange Rates	£1 = \$1.6. Multiply by 1.6 to go from £ to \$ & divide by 1.6 to go from \$ to £	E: Convert £12 to \$ A: $12 \times 1.6 = 19.20
Direct and Inverse	Direct: $y = kx$ or $y \propto x$ (This just reads y is directly proportional to x.)	Example 1: " p is directly proportional to q .
<u>Proportion</u>	With direct proportion k is multiplied by x to get y . As x increases, y increases.	When $p = 12$, $q = 4$. Find p when $q = 20$ "
	k is known as the constant of proportionality. It's just a 'fixed value' multiplier.	$p = kq \qquad \qquad \therefore p = 3q$
	Inverse: $y = \frac{k}{1}$ or $y \propto \frac{1}{1}$ (This just reads y is inversely proportional to x.)	Answer: 1^{st} solve for $k: 12 = k(4)$ now: $p = 3(20)$
	$\begin{array}{ccc} x & x \end{array}$	k = 3 $p = 60$
	With inverse proportion k is divided by x to get y . As x increases, y decreases.	Example 2: " p is inversely proportional to q .
	To solve problems involving direct and inverse proportion:	When $p = 20$, $q = 10$. Find p when $q = 4$ "
	(1) Pick the right equation (for either direct or inverse) and substitute the values	k 200
	given in the question to solve for k (the constant of proportionality)	$p = \frac{k}{q} \qquad \qquad \therefore p = \frac{200}{q}$
	(2) Rewrite the equation with the correct value of k you have just found.	q q
	(3) Substitute the 2^{nd} given value in for x or y to find the required missing value.	Argument 1st solve for $k = 20$ $k = 200$
	(Be careful with examples such as y is proportional to the square of x . This can	Answer: 1 st solve for $k: 20 = \frac{k}{10}$ now: $p = \frac{200}{4}$
	be written as $y = kx^2$ instead of $y = kx$). The root of x is written as \sqrt{x} .	k = 200 $p = 50$

Page 6 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Direct and Inverse	Graphs showing Direct Proportion can be written in the form $y = kx^n$		
<u>Proportion Graphs</u>	where k is the constant of proportionality. The notation $y \propto x^n$ may be used and	Direct Proportion Graphs	Inverse Proportion Graphs
	means exactly the same thing. Direct graphs will always have the point (0,0) on.	$y = 3x^2$	$y = \frac{2}{x}$
	The graph could be a straight line such as $y = 2x$ or a curve such as $y = 3x^2$.	-6	$y = \frac{3}{x^2}$
	Graphs showing Inverse Proportion can be written in the form $y = \frac{k}{x^n}$	4 y = 2x	4
	where <i>k</i> is the constant of proportionality. The notation $y \propto \frac{1}{x^n}$ may be used.	$y = 0.5x^5$	$y = \frac{0.5}{x^5}$
	These will not pass through the point $(0,0)$ & approach the x axis as x increases.	2 4	0 2 4 6 8

Algebra

Terminology	Expression: A collection of terms (letters (unknowns/variables) and possibly	Expressions: $4a+2b$, x^2-3 , $1-4y$,
	numbers (constants)) without an equals sign. You don't solve an expression!	Equation: $4a + 2b = 1$
	Equation: A collection of terms (letters/numbers) with an equals sign. You can	Identity: $4a + 2b \equiv 2(2a + b)$
	look to solve an equation for values of the unknown term (letter).	Formula: $A = \pi r^2$
	Identity: An equation that holds true for all values. The ≡ sign is often used.	Inequality: $x > 4$
	Formula: A set of symbols that expresses a rule.	inequality: $\lambda \geq \tau$
C: 1:C:	Inequality: When a two values are not equal (≠).	
Simplifying	Just collect the 'like terms'. Be careful with negatives! x^2 and x are not like	(a) $2x+3y+4x-5y+3$ becomes $6x-2y+3$
Expressions 🗎	terms. $4x+1$ is not $5x$ as 1 is not an x . It's a known as a constant.	(b) $3x+4-x^2+2x-1$ becomes $5x-x^2+3$
<u>Identities</u>	An identity holds true for any value you substitute in. What does that mean?	(a) $x^2 - 2x + 4 \equiv (x-1)^2 + 3$
	$4x+10 \equiv 2(2x+5)$ is an example. Substitute 2 in for x and each side will give	(b) $x^2 + x - 6 \equiv (x - 2)(x + 3)$
- E	14. This will be the same for all values of x. Notice the \equiv instead of $=$?	`
$x \underline{\text{times}} x \blacksquare$	Multiplying x by x gives x^2 and not $2x$. Check this with 3, 5, or 10 for example	Squaring is multiplying by itself and not by 2.
$p \times p \times p$	$p \times p \times p$ is p^3 and not $3p \cdot 3p$ means $3 \times p$. This is a common error!	$3\times3\times3=27$ and not 9 $5\times5\times5=125$ and not 15
p+p+p	This $3p$ not p^3 . Just use numbers to check!	2+2+2=6 and not 8 $4+4+4=12$ and not 64
Basic Powers (×&÷)	When multiplying with the same letter or number (base) just add the powers.	(a) $p^5 \times p^3 = p^8$ (b) $p^7 \div p^4 = p^3$ (c) $p^{12} \times p = p^{13}$
(Rules of Indices)	When dividing with the same letter or number (base) just subtract the powers.	(d) $2a^5 \times 3a^3 = 6a^8$ (e) $48y^5 \div 16y = 3y^4$
$a^m \times a^n = a^{m+n}$ and	Remember $p = p^1$ and $p^0 = 1$. The base must be the same! $a^4 \times a = a^5$	
$a^m \div a^n = a^{m-n}$	BUT $a^6 \times b^3 \neq ab^9$ (The symbol \neq means doesn't equal)	(f) $\frac{4m^6}{2m^2} = 2m^4$ (g) $m^2n \times m^5n^{-1} \times 2m^{-3}n^6 = 2m^4n^6$
The Zero Power	A number raised to the power of zero is 1. An example could be $4^0 = 1$ or $x^0 = 1$.	(a) $4^0 = 1$ (b) $x^0 = 1$ (c) $(xy)^0 = 1$ (d) $xy^0 = x$
(Rules of Indices)	Be careful with examples such as $3y^0$ this is not 1, it's $3 \times 1 = 3$ as the zero power	N.B 0^0 is undefined! Can you think or explain why?
$a^{0} = 1$	is only on the y. Using the rule below though $(3y)^0 = 1$.	z v z z z z z z z z z z z z z z z z

Page 7 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Raising to a Power (Rules of Indices)	When a number or algebraic term already raised to a power is raised to another power you multiply the powers. A common error is to multiply the bases by the	(a) $(x^2)^3 = x^6$ (b) $(x^4y^5)^{0.5} = x^2y^{2.5}$
$\left(a^{m}\right)^{n}=a^{mn}$	powers instead of the powers by the powers. Example (c) to the right shows that 3 is to the power of 1. The common error is to write 12 instead of 3 ⁴ .	(c) $\left(3x^4y^{\frac{1}{4}}\right)^4 = \left(3^1x^4y^{\frac{1}{4}}\right)^4 = 3^4x^{16}y^1 = 81x^{16}y$
Negative Powers (Rules of Indices)	If you have number or algebraic term raised negative power this can be written as the reciprocal of that number or term raised to the positive power.	(a) $3^{-2} = \frac{1}{3^2}$ which is $\frac{1}{9}$ (b) $5^{-3} = \frac{1}{5^3}$ which is $\frac{1}{125}$
$a^{-m} = \frac{1}{a^m}$	Some examples: (i) $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ (ii) $\left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4 = \frac{81}{16}$ (iii) $\left(\frac{x}{y}\right)^{-z} = \left(\frac{y}{x}\right)^z$	Tougher one! (c) $0.5^{-2} = 4$ (d) $0.2^{-3} = 125$
Fractional Powers (Rules of Indices)	"Find the <i>nth</i> root of the number and then raise it to the power of m ". This is $\frac{1}{2}$	(a) $16^{\frac{1}{4}}$ You need the 4 th root of 16 which is 2 as $2^4 = 16$
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	easier to do than it is to explain! If you have 8^3 you take the third (or cube) root of 8. This gives you 2. Of course $2^1 = 2$ which gives us our answer. Now, if you $\frac{2}{3}$	(b) $27^{\frac{2}{3}} = \left(27^{\frac{1}{3}}\right)^2 = \left(3\right)^2 = 9 \text{ (c) } 32^{\frac{3}{5}} = \left(32^{\frac{1}{5}}\right)^3 = \left(2\right)^3 = 8$
	have 8^3 , you do exactly the same at the start as before but you need to raise 2 to the power of 2 this time. $2^2 = 4$ so the answer is 4. DO NOT DIVIDE THE NUMBER (BASE) BY THE POWER! Look out for negative fractional powers	(d) $125^{\frac{4}{3}} = \left(125^{\frac{1}{3}}\right)^4 = 625$ (e) $\left(\frac{25}{36}\right)^{-\frac{1}{2}} = \left(\frac{36}{25}\right)^{\frac{1}{2}} = \frac{6}{5}$
Expanding	Multiply the number or algebraic term on the outside by each term inside the	(a) $5(3x+2) \equiv 15x+10$ A common error is $15x+5$.
Single Brackets	brackets. Be careful with negatives! The question may ask you to 'multiply out'	(b) $2x(3x-4) \equiv 6x^2 - 8x$
Expanding Double	Multiply each term (all 4) by one another. You can use F.O.I.L & then simplify.	(x+2)(x-3) $(2x-1)(3x+2)$
Brackets Trial	First, Outer, Inner, Last. Remember to simplify! Don't forget $+4x-x$ is $+3x$	(a) $x^2 - 3x + 2x - 6$ (b) $6x^2 + 4x - 3x - 2$
Expanding Triple Brackets	and x times x is x^2 not 2x. Be careful! $(a+b)^2 = (a+b)(a+b)$ and NOT $a^2 + b^2$	$x^2 - x - 6$ $6x^2 + x - 2$
Factoring Single	Find the HCF of numbers &/or terms and write these on the outside of the	(a) $6x-3 \equiv 3(2x-1)$ (b) $15x+10 \equiv 5(3x+2)$
<u>Brackets</u>	bracket. Inside will be terms you have to \times the outside by to get the original.	(c) $6x^2 + 8x \equiv 2x(3x+4)$ (d) $x^2 - x^3 = x^2(1-x)$
Factoring Quadratics	When a quadratic expression is in the form $ax^2 + bx + c$ find the two numbers	(a) $x^2 + 7x + 10 \equiv (x+5)(x+2)$
when $a = 1$	that ADD to give <i>b</i> and MULTIPLY to give <i>c</i> . Be careful with negatives. Have 2 sets of brackets with <i>x</i> in each and then choose the factors!	(b) $x^2 + 2x - 8 \equiv (x+4)(x-2)$
<u>Factoring</u>	This method is a slightly less mathematically rigorous approach but can make	Answer: (1) Let's start with $(6x)(6x)$.
Quadratics when	factoring easier when you have, for example $6x^2 + 5x - 4$ to factor.	(2) Multiply a by c to give $ac = -24$
$a \neq 1$	When a quadratic expression is in the form $ax^2 + bx + c$:	(3) You need 2 numbers that add to give +5 and
	(1) Put the value of a in the front of each of the 2 brackets. (Don't panic here!)	multiply to give -24 . They will be $+8$ and -3
	(2) Multiply a by c	(4) This now gives $(6x+8)(6x-3)$.
	(3) Find the two numbers that add to give by and multiply to give <i>ac</i> (4) Place these values in the brackets with the correct sign.	(5) At this stage take common factors out of both brackets (where applicable) and simplify:
	(4) Prace these values in the brackets with the correct sign. (5) Simplify and cancel common factor. Example: Factor $6x^2 + 5x - 4$	brackets (where applicable) and simplify: $2(3x+4)\times 3(2x-1)$, Cancel to give $(3x+4)(2x-1)$
	(3) Simplify and cancel common factor. Example. Factor $0x + 3x - 4$	2(3N+1)N3(2N-1), Current to give (3N+7)(2N-1)

Page 8 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

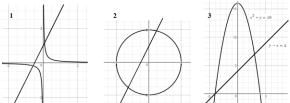
Factoring the	An expression in the form $a^2 - b^2$ you can factorise to give $(a+b)(a-b)$.	(a) $x^2 - 25 \equiv (x+5)(x-5)$ Each term is a squared term
Difference of Two	If you look at the examples to the right, when you expand the double brackets	(b) $16x^2 - 81 = (4x + 9)(4x - 9)$
<u>Squares</u>	the two middle terms cancel to just leave the first and last.	(' ') (' ')
Completing the	There are times when a quadratic expression can't be factored. When a	Example 1: Complete the square for $x^2 - 6x + 2$
Square for	quadratic is in the form $x^2 + bx + c$ you can write this in the form $(x+p)^2 + q$	Answer:
Quadratic expressions (when	(The form $(x+p)^2 + q$ is found by evaluating $\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$.)	(a) $(x-3)$ (b) $(x-3)^2$ (c) $(x-3)^2-9+2$
a = 1).		which will tidy to give $(x-3)^2 - 7$
	This looks quite tough but it isn't too bad! Just follow these 3 steps: (a) Have a set of brackets with x in and half the value of b in.	Example 2: Complete the square for $x^2 + 5x - 3$ Answer:
	(b) Square the bracket.	
	(c) Subtract $\left(\frac{b}{2}\right)^2$ from c and tidy the expression.	(a) $\left(x + \frac{5}{2}\right)$ (b) $\left(x + \frac{5}{2}\right)^2$ (c) $\left(x + \frac{5}{2}\right)^2 - \frac{25}{4} - 3$
	After a few goes it becomes easier. Try and work with fractions as your work later on in maths will require you to do examples without a calculator.	which will tidy to give $\left(x + \frac{5}{2}\right)^2 - \frac{37}{4}$
	There are advantages to writing an expression in the form $(x+p)^2 + q$. You can	You can say that the minimum value of the expression
	gather information about the maximum or minimum of a function and the axis of symmetry. The completed square form can also allow us to solve quadratic	in part (a) would be -7 and $-\frac{37}{4}$ in (b).
	equations of the form $ax^2 + bx + c = 0$ when factoring is not possible.	We will look at this later on in more depth.
Completing the	When a quadratic expression is in the form $ax^2 + bx + c$ where $a \ne 1$ you can	Example 1: Complete the square for $4x^2 + 8x - 3$
Square for	complete the square and write it in the form $p(x+q)^2 + r$. You can use a similar	Answer: Factor the 4 out $4[x^2 + 2x] - 3$. At this stage
Quadratic expressions (when	technique to that above but factor out <i>a</i> at the start. Here is an example:	complete the square inside the brackets to give
$expressions (when a \neq 1).$	Complete the square for $2x^2 - 12x + 4$. You need to take the factor of 2 out of	$4 \left[(x+1)^2 - 1 \right] - 3$. Now expand the square brackets to
	the first two terms: $2[x^2-6x]+4$. At this stage you can complete the square	give $4(x+1)^2-4-3$. Finally tidy to $4(x+1)^2-7$
	inside the square brackets to give: $2[(x-3)^2-9]+4$. You can now expand the	Example 2: Complete the square for $-x^2 + 5x - 1$
	square brackets to give $2(x-3)^2 - 18 + 4$ which gives $2(x-3)^2 - 14$.	Answer: Factor the -1 out to give $-\lceil x^2 - 5x \rceil - 1$. Now
	This method can be used when <i>a</i> is a negative number as shown to the right. You can only complete the square when the value of <i>a</i> is 1. In the first example you could graph the quadratic. This would open upwards	complete the square $-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]-1$. Expand the
	(positive), have a minimum point at $(-1,-7)$ and the axis of symmetry would be the line $x=-1$.	square brackets $-\left(x-\frac{5}{2}\right)^2 + \frac{25}{4} - 1$ and tidy to give the
	In the second example the graph would open downwards (negative), have a	2
	maximum point $\left(\frac{5}{2}, \frac{21}{4}\right)$ and the axis of symmetry would be the line $x = \frac{5}{2}$	answer $-\left(x-\frac{5}{2}\right)^2 + \frac{21}{4}$.

Page 9 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Formulas (Writing)	Voy may be called to write and you a formula given a connection. Use terms	Evamples "Dah sharges 62 per window and a 65 cell
Formulae (Writing)	You may be asked to write and use a formula given a scenario. Use terms	Example: "Bob charges £3 per window and a £5 call
	(letters) to represent the unknown quantities such as $C \& N$ and numbers to	out charge" Answer: $C = 3N + 5$ with N being the
	represent the constants such as +5 shown to the right which is a fixed value.	number of windows cleaned and C the cost.
<u>Formulae</u>	Substitute the numbers given into the formula or expression. Swap letters for	Example: $a=3$, $b=2$ and $c=5$ Find:
(Substituting into)	numbers. Be careful on the order. If $x = 3$ and you need $2x^2$ square 3 first, then	(i) $2a$ which is just $2(3) = 6$
	multiply by 2. There is a difference between $2x^2$ and $(2x)^2$. Be careful with	(ii) $3a-2b$ so $3(3)-2(2)=5$
	negatives. Squaring makes it positive! Also, subtract a – means add it.	(iii) $b^2 - 5$ which is $(2)^2 - 5 = -1$
Formulae/Equations	Changing the subject of an equation is like solving one without a 'pretty'	Example: Make <i>x</i> the subject of the equation
(Rearranging)	answer at the end. Instead of your answer being a number, it's usually an	$y = \frac{2x - 1}{x - 1}$
	expression containing other terms (letters) and possibly numbers. Don't panic;	$y = \frac{1}{2}$
	just apply the same rules as for solving.	2r-1
	If you have a +, subtract this value from both sides. If you have a – then add it	A: $y = \frac{2x-1}{z}$. Start by multiplying both sides by z to
	to both sides, a \times then divide both sides by this quantity and a \div then multiply	Z 1 N 1114 1 4 11
	both sides by this quantity. What you do to one side, you just do to the other!	give $yz = 2x - 1$. Now add 1 to both sides so $yz + 1 = 2x$
	If there are no + or – subtract signs then it will be \times or \div . Remember	and finally divide both sides by 2 to give $\frac{yz+1}{2} = x$.
	$ut = u \times t$ and not $u + t$. Brackets means multiply too!	and many divide cour sides by 2 to give 2
	It doesn't matter if you have your subject on the right or the left hand side!	You now have <i>x</i> as the subject.
Solving Linear	Get the x's (unknowns or letters) on one side and the numbers on the other. Use	у , , ,
Equations	the balance method. Simply do the opposite operation to what the equation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Unknowns on one	gives until you have only x 's on one side and only numbers on other.	2x-3=7 $3p+6=2p+10$ 2 $3p+6=18$ y
<u>side</u>	If you have a +, subtract this value from both sides. If you have a – then add it	(a) $2x = 10$ (b) $\frac{y}{2} = 6$
<u>Unknowns on both</u>	to both sides, a \times then divide both sides by this quantity and a \div then multiply	$1 \lambda = 0$
<u>sides</u>	both sides by this quantity. What you do to one side, you just do to the other!	p = 4 y = 12
Setting Up and	Find an expression for each piece of information given in the question, add	E: Bob is <i>n</i> years old. Fred is twice his age & Sue is
Solving Linear	them together, and simplify the expression. This will then be set equal to a	one year your than Bob. Their total age is 39. Set up
Equations	value given in the question (or implied) to give you your equation. Solve the	and solve an equation to find the age of Bob. A:
	equation and then make sure you answer the original question in context!	n+2n+n-1=39 this gives $4n-1=39$ and $n=10$
Equations with	You can think of this a couple of different ways:	Example 2 (Cross Multiplying)
Fractions	(1) Multiplying through by the LCM to 'clear' the fractions.	x-1 x
	(2) Cross multiplying to 'clear' the fractions.	Solve the equation: $\frac{x-1}{4} = \frac{x}{5}$
	Example 1: (Multiplying by the LCM). Solve the equation: $\frac{x}{3} + 4 = 2 - \frac{3x}{4}$	Answer: Cross Multiplying to get: $5(x-1) = 4x$.
	2. Admpte 1. (Whitehpryning by the Delvi). Solve the equation: $\frac{-+4-2}{3}$	Expanding to get $5x-5=4x$ which gives $x=1$.
	Answer: Multiply both sides of the equation by 12 (which is the LCM) to	Zirpiniong to got on to in timen gives it.
	leave: $4x+48=24-9x$. At this stage you add $9x$ and subtract 48 to both sides	Use either or both methods to solve equations with
	of the equation. You can now solve to get $13x = -24$ and $x = \frac{-24}{13}$	fractions. It's often a case of being flexible and seeing which method is quickest.
	The section later on algebraic fractions will help for harder examples	1

Page 10 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

G 1 : T :			
Solving Linear Simultaneous Equations (Algebraically)	If you have 2 unknowns (x and y for example) you need at least two equations to find the value of both x and y . To do this you solve simultaneous equations. Either make the value in front (coefficient) of x 's the same or the y 's the same.	(a) 2x + y = 7 $3x - y = 3$	Add them to get $5x = 10 \& x = 2$. Substitute in: $2(2) + y = 7$ so $y = 3$
Solving Linear and Non Linear Simultaneous Equations	Once they are the same (eg both 5) if the signs in front are the same , subtract if they are different , add . You will have now eliminated one unknown (x or y) Solve the equation you have for either x or y . (This will be a simple equation) Finally substitute that value back in to any of the other equations to solve for the other unknown. Check your answers work for both! These equations are solved by drawing the graphs (straight lines) of the two equations given. The solutions (answer to the question) will be where the lines meet. The graph to the right shows the solutions of the simultaneous equations $y = 5 - x$ and $y = 2x - 1$. They intersect (meet) at the point with	(b) $5x + 2y = 9$ $10x + 3y = 16$	Multiply 1 st equation by 2. 10x+4y=18. Subtract to eliminate x's to give $y=2$. Substitute in: $5x+2(2)=9$ so $x=1$
(Graphically)	coordinates (2,3). This means the solutions will be $x = 2$ and $y = 3$.		
Solving Quadratics (the form $ax^2 = b$)	A quadratic equation will have a 'squared term' in such as x^2 or t^2 as its highest power. An example could be $x^2 = 36$. When the quadratic is in the form $ax^2 = b$ simply isolate the x^2 term so you have $x^2 = t$ 0 some value and square root both sides to solve. Remember there will be a positive and a negative solution! $3 \times 3 = 9$ and $-3 \times -3 = 9$ too. We must write both answers down.	$x^{2} = 36$ (a) $x = \pm \sqrt{36}$ $x = \pm 6$	$2x^{2} = 98 x^{2} = 49 x = \pm \sqrt{49} x = \pm 7$ $x^{2} + 10 = 25 (c) x^{2} = 15 x = \pm \sqrt{15}$
Solving Quadratics (the form $ax^2 + bx = 0$)	These can be factored and set to zero as there is no constant. Here is an example: $x^2 + 4x = 0$ now factor the x to give $x(x+4) = 0$. At this stage either $x = 0$ or $x+4=0$ as one or both of the factors will $= 0$ For the answer to be 0 either one or both of the factors must $= 0$. (Just think logically! $5 \times 0 = 0$, $9 \times 0 = 0$). This gives us the solutions $x = 0$ or $x = -4$.	(a) $x^2 - 3x = 0$ x(x-3) = 0 x = 0 or $x = 3$	$x^{2} = 5x$ (b) $x^{2} - 5x = 0$ $x(x-5) = 0$ $x = 0 \text{ or } x = 5$ (c) $2x^{2} + 8x = 0$ $2x(x+4) = 0$ $x = 0 \text{ or } x = -4$
Solving Quadratics Factoring (a = 1)	You have seen previously how to factor and expression in the form $ax^2 + bx + c$. You can use this technique to solve equations in the form $ax^2 + bx + c = 0$. Once the expression is factored and set = to a value it becomes an equation and you can solve for x . Set the quadratic = 0 and solve. Here is an example: Solve the equation $x^2 - x - 6 = 0$. Using the method shown previously you can factor to give $(x-3)(x+2) = 0$. This means either $(x-3) = 0$ or $(x+2) = 0$. Using these facts you can say $x = 3$ or $x = -2$.	Answer: Factor $x = 2$ or $x = -5$ Example 2: Solve Answer: First regive $x^2 + x - 12 = 2$	we the equation $x^2 + 3x - 10 = 0$ to give $(x-2)(x+5) = 0$. This means we the equation $x^2 + x = 12$ carrange into $ax^2 + bx + c = 0$ to ax = 0. Now factor to $(x+4)(x-3) = 0$. In the solutions $x = -4$ or $x = 3$.
Solving Quadratics Factoring $(a \neq 1)$	You have seen previously how to factor and expression in the form $ax^2 + bx + c$ when $a \ne 1$. You can use the same method to solve an equation in the form $ax^2 + bx + c = 0$ as the one used in the previous section. As with all equations check that your answer is valid especially if it's in context. Some solutions may not be valid such as negative answers where missing lengths are involved.	Example: Solve Answer: Factor	the equation $2x^2 + 7x - 4 = 0$ to give $(2x-1)(x+4) = 0$. This will tions $x = \frac{1}{2}$ or $x = -4$.


Page 11 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Solving Quadratics	Wilson - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	E
(Using the formula)	When a quadratic equation is in the form $ax^2 + bx + c = 0$ the solutions can be	Example: Solve the equation $3x^2 + x - 5 = 0$
(Osing the Jornata)	found using the quadratic equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$.	Answer: $a = 3, b = 1 \text{ and } c = -5$
	From the quadratic equation $x = \frac{a}{2a}$.	$-1\pm\sqrt{(1)^2-4(3)(-5)}$
	You would use the formula if the equation doesn't factor or you can't factor it	Substitute in to give $x = \frac{-1 \pm \sqrt{(1)^2 - 4(3)(-5)}}{2(3)}$
	easily. Be careful with the signs on $a, b \& c$ and make sure you obtain the + and	` '
	the – solution using a calculator. To do this simply scroll to the \pm part, start with	The + answer will be $x = \frac{-1 + \sqrt{61}}{6}$ or 1.14 to 2 dp.
	+ and then change to – for the second solution. On a calculator use brackets	
	$-(h) + \sqrt{(h)^2 - A(a)(a)}$	The enguer will be $r = -1 - \sqrt{61}$ or 1.47 to $2dn$
	for x and just substitute the values in to give $\frac{-(b) \pm \sqrt{(b)^2 - 4(a)(c)}}{2(a)}$.	The – answer will be $x = \frac{-1 - \sqrt{61}}{6}$ or -1.47 to 2dp
Solving Quadratics	When a quadratic equation won't factor, you have two obvious choices when it	Example 1: Solve the equation $x^2 + 4x + 1 = 0$
(Completing the	comes to solving the equation. The first is using the formula (as shown above)	Answer: Start by completing the square:
<u>Square)</u>	and the 2 nd is using the completed square form.	$(x+4)^2 - 16 + 1 = 0$. At this stage you can write
	When a quadratic is in the form $ax^2 + bx + c = 0$ you can write this in the form	$(x+4)^2 = 15$ followed by $x+4 = \pm \sqrt{15}$. Simply
	$(x+p)^2 + q = 0$ by completing the square (as shown previously). For there to be	subtracting the 4 from both sides gives us our exact
	real solutions $q < 0$. Before you use this method check you can't factor it as that	answer of $x = -4 \pm \sqrt{15}$
	would be easier most of the time! Using the example given previously BUT as	Example 2: Solve the equation $x^2 - 7x - 2 = 0$
	an equation set = 0 let's find the roots (solutions) to the equation $x^2 - 6x + 2 = 0$	Answer: Start by completing the square:
	Here are the steps (i) $(x-3)$ (ii) $(x-3)^2$ (iii) $(x-3)^2-9+2$	
		$\left(x - \frac{7}{2}\right)^2 - \frac{49}{4} - 2 = 0$ which will now give
	which will tidy to give $(x-3)^2 - 7 = 0$. This is where we got up to before!	(2) 4
	Now (iv) add 7 to both sides of the equation to give $(x-3)^2 = 7$. At this stage	$(7)^2$ 53 7 $\sqrt{53}$
	_ ` '	$\left(x - \frac{7}{2}\right)^2 = \frac{53}{4} \text{ which in turn gives } x - \frac{7}{2} = \pm \sqrt{\frac{53}{4}}$
	square root both sides to give (v) $x-3=\pm\sqrt{7}$. Finally add 3 to both sides to	,
	give the 'exact answer' of $x = 3 \pm \sqrt{7}$. Exact means in surd form. Remember you	and further $x = \frac{7}{2} \pm \frac{\sqrt{53}}{2}$ & tidying gives $x = \frac{7 \pm \sqrt{53}}{2}$
	will have two solutions $x = 3 + \sqrt{7}$ and $x = 3 - \sqrt{7}$ (or 0.35 and 5.65 to 2 d.p)	2 2 2
Equation of a Circle	The equation of a circle with its centre at the origin (0, 0) and a radius	Example: $x^2 + y^2 = 16$ is a circle with a radius of 4.
(and its graph)	length r can be written as $x^2 + y^2 = r^2$. Don't panic, this is not much harder	Answer: Use a compass set 4 units apart!
	than using Pythagoras Theorem. Often you will be asked to draw one. If so just	
	use a compass and have your centre at the origin.	3
	$x^2 + y^2 = 16$ is shown to the right and passes through (4,0) (0,4) (-4,0) & (0,-4)	
	$x^2 + y^2 = 25$ would have radius 5 and pass through (5,0) (0,5) (-5,0) & (0,-5)	4.0 3 3 3 4.0
	A common error is not square rooting the radius when asked for its length!	
	If you are given a diagram and asked for the equation, simply pick a point and	
	substitute the x and y coordinates into $x^2 + y^2 = r^2$ to find the value of r^2 (or r).	0,4
	y = 1 to find the value of $y = 1$.	

Page 12 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Linear and non
Linear Simultaneous
Equations (Solving
Algebraically)

A linear equation can be represented by a line. A non-liner by a curve or circle (for example). One of your equations can be written in the form 'Elimination' by subtraction is often not possible so the method of substitution is used for most examples. The general rule is to make either x or y the subject of the **linear** equation and substitute into the **non-linear equation**. Once you have solved the new non-linear equation for one unknown (x or y) then substitute the answer(s) back into the linear equation to find the other. Remember to solve for both x and y! Your solutions may have to be given as coordinates as they will be the points where 2 graphs meet. The 2 graphs of the example to the right is shown below in figure 3. Figure 1 is a line & reciprocal, 2 a line & circle

<u>Solving Equations by</u> iterative methods

There will be times when it's hard to solve an equation using the techniques you have learned or could learn in maths. The equation $x = \cos(x)$ is an example. In such cases you **could** use an iterative formula to solve the equation to a certain degree of accuracy.

If you have a function f(x) = 0 you can rearrange this to give x = g(x). This is just a new function of x using the original terms from f(x) = 0. This equation can then be used to set up the iterative formula. This can be written as $x_{n+1} = g(x_n)$. This forms a sequence for values to be substituted into. You will be given a value of x_0 (starting value for the first approximation of a

You will be given a value of x_0 (starting value for the first approximation of a solution to the equation f(x) = 0) and it's simply a case of setting up the iterative formula on the calculator and finding values of x_1, x_2, x_3 and so on to locate a root. You will be given a level of accuracy to aim for or a number of iterations to produce. All that is happening is the first value (x_0) goes into the right hand side of the equation to produce a value of x on the left hand side. This value (x_1) is then taken and substituted into the right hand side again to produce a second value of x (x_2). This process continues until the sequence converges (tends to/approaches) to a limit. This limit will represent the solution of the equation. Not all rearrangements will yield the answer you want! Be flexible when it comes to forming x = g(x). Some sequences may diverge!

Example: Solve the simultaneous equations y-x=4 and $x^2+y=16$.

Answer: You can rewrite the 1st equation as y = x + 4. Now substitute this into the second equation to eliminate y to give $x^2 + x + 4 = 16$.

This can be written as $x^2 + x - 12 = 0$ which factors to (x+4)(x-3) = 0 and gives x = -4 or x = 3.

You now have to solve for y. Substitute the two values of x back into the linear (y = x + 4) to solve for y.

When x = -4, y = -4 + 4 which gives y = 0.

When x = 3, y = 3 + 4 which gives y = 7.

You have 2 solutions for x and 2 solutions for y.

If these were points of intersection of two graphs the coordinates would be (-4,0) and (3,7).

Example: Use an iterative formula to find the positive root of the equation $x^2 - 3x - 6 = 0$ to 3 decimal places. **Answer:** Set up an iterative formula by making x the subject of the equation $x^2 - 3x - 6 = 0$.

$$x^2 = 3x + 6$$
$$x = \pm \sqrt{3x + 6}$$

$$x = +\sqrt{3x+6}$$

Start with $x_0 = 4$. At this stage type in 4 ad press = on your calculator. To find x_1 type in $\sqrt{3}$ Ans + 6. This will give $x_1 = 4.242640.$.

To find the next value x_2 , press = again. This gives $x_2 = 4.327576...$, press = again for x_3 which gives $x_3 = 4.356917...$ repeat to get $x_5 = 4.37047..$ for x_4 giving $x_4 = 4.367007...$, $x_5 = 4.37047...$, $x_6 = 4.3716604...$ $x_7 = 4.372068...$

 $x_8 = 4.372208...$ At this stage both x_7 and x_8 round to 4.372. This means the iterative formula is converging to 4.372 to 3 decimal places.

Page 13 - Licensed to Springwood High School & West Norfolk Acadamies Trust - This copy cannot be shared online or uploaded to any publiically viewed website or social media platform.

Plotting Straight Line Graphs (Linear Graphs or Linear Functions) Method 1 (Table) Method 2 (Gradient/Intercept Method) B B B	Method 1 : Make a table of values using the method shown to the right. The graph of $y = 2x + 1$ is shown to the right for $-1 \le x \le 3$. All you have to do is substitute the values into the equation start with $x = -1$ and finishing with $x = 3$. Make sure the values are going up by 2 each time! Method 2 : Use the gradient/intercept method. The line $y = 2x + 1$ is in the form $y = mx + c$. The gradient is m and the y intercept is c . This line will pass through the y axis at the point (0.1) and have a gradient of 2. That means it goes up 2 for every one it goes across (to the right as it's +). (Gradient shown below) Make sure your line is straight. Any 'kinks' suggests your coordinates are incorrect. The values will always be going up or down by a fixed amount. Don't worry if you get an equation such as $x + y = 5$. You can just use a table of values as before. You may even want to rearrange the equation to $y = 5 - x$ or	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Midpoint of a Line	y = -x + 5 if you find it easier. Finally! Make sure you draw a line! Method 1 : Add the <i>x</i> coordinates and divide by 2, add the <i>y</i> coordinates & divide by 2. Method 2 : Sketch the line (if you can) and find the values half between the two <i>x</i> 's and two <i>y</i> 's Another way of thinking about this is that the midpoint is the average of the <i>x</i> 's and the averages of the <i>y</i> 's. The formula is $M = \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}$ The numbers won't necessarily be integers and could of course be negative.	The graph of $y = 2x + 1$ for $-1 \le x \le 3$ Example: Find the midpoint of a line through $(2,1)$ & $(6,7)$. Answer: $\frac{2+6}{2} = 4$ and $\frac{1+7}{2} = 4$ so the midpoint is 4,4 Subtract 2 from B Subtract 3 from B Add 2 to A Add 3 to A Add 3 to A Add 3 to A Add 4
Length of a Line Segment.	To find the length of a line segment just use Pythagoras Theorem. Method 1 (Easier Examples): Make the line the hypotenuse of a right angled triangle, count the number of squares horizontally and the number of square vertically. Use the as the lengths of the two shorter sides of a right angled triangle. At this stage apply Pythagoras Theorem. Method 2 (Harder Examples): Use the formula $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. Don't be scared, this is Pythagoras too. It's just easier to apply if you have decimal, fractional or negative coordinates and drawing a triangle (like in method 1) is hard. It's just the 'change in x and the change in y . Example: $A(0.5,2)$ and $B(-3,4.2)$. Find the length of the line segment AB . Solution: $x_1 = 0.5, x_2 = -3, y_1 = 2 \& y_2 = 4.2$. so $\sqrt{(0.5 - (-3))^2 + (2 - 4.2)^2} \approx 4.1$	Method 1 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

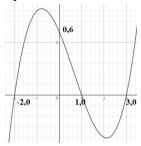
Page 14 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

The Gradient of a Line	The gradient of a line is how steep the line is. The greater the number (+ or -), the steeper the line. To find the gradient of a line divide the total distance up or down by the total distance left or right . Up is + and down is Right is + and left is You may be able count squares and divide as shown to the right. The gradient can be positive (sloping upwards left to right) or negative (sloping downwards from left to right). Without a graph you could use the formula. $m = \frac{y_1 - y_2}{x_1 - x_2}$ The gradient (<i>m</i>) of the line passing through (1,2) and (11,6) would be $m = \frac{6-2}{11-1} = \frac{4}{10} = \frac{2}{5}$. This goes up 2 units for every 5 to the right.	Gradient = 4/2 = 2 Gradient = -3/1 = -3 4 -3 1 1
Find the equation of a straight line given	A straight line can be written in the form $y = mx + c$ where m is the gradient	Example: Find the equation of the line with gradient 4
a point and a	and c is the point where the line crosses the y axis (c is known as the constant). To find the equation of a straight line given a point the line passes through and	passing through the point $(2,7)$. Answer: In this example $m = 4$ and you need to find the
gradient.	the gradient of the line you simply substitute the values of x , y and m into the	value of c . Simply substitute the given values in to
	equation $y = mx + c$. To find the value of c. Once you have the value of c simply	solve for c .
	put the equation 'back together' in the form $y = mx + c$. You may need to do	y = mx + c which gives $7 = 2(4) + c$. This gives $c = -1$.
	this from a graph. Just find the gradient of the line and a point it passes through.	The equation of the line is therefore $y = 4x - 1$
Finding the equation	If you have two points (or two sets of coordinates) then you can find the	Example: Find the equation of the line passing through
of a straight line	equation of the straight line passing through them. To find the equation of a	the points $(6,11)$ and $(2,3)$.
given two points	straight line all you only ever need is the gradient and one point the line passes through (as shown in the example above). To find the gradient use the method	Answer: First find the gradient: $m = \frac{11-3}{6-2} = \frac{8}{4} = 2$.
	shown above taking the two points you have for x_1, y_1 and x_2, y_2 . In the	At this stage pick either one of the points the line goes
	example to the right $x_1 = 6$ and $y_1 = 11$. $x_2 = 2$ and $y_2 = 3$.	through and substitute into $y = mx + c$ to give:
	Once you have the gradient, pick one of the points you have (you can choose	11 = 2(3) + c. You can see $c = 5$ giving us the
	either) and simply substitute into $y = mx + c$ as shown in the previous section.	equation $y = 2x + 5$.
Parallel and	If two lines are parallel they will both have the same gradient. The two lines	Example 1: Find the equation of a line parallel to the
Perpendicular Lines	will never meet and stay a fixed distance apart. The value of m (the gradient) will be the same for both lines.	line $y = 3x + 2$ which passes through the point $(1,9)$.
	If two lines are perpendicular they will be at right angles to one another. The	Answer: The gradient will be the same giving $m = 3$. Now substitute into $y = mx + c$ to give $9 = 3(1) + c$.
	product (×) of their gradients will always = -1 (or, if you like, the gradient of	This means $c = 6$ the equation of the line $y = 3x + 6$.
	one line (m_1) is the negative reciprocal of the gradient of the other line (m_2)).	Example 2: Find the equation of a line perpendicular
	This could be written as $m_1 \times m_2 = -1$ ifs the lines are perpendicular OR if a line	to the line $y = 3x + 2$ which passes through the point
	has gradient m, the line perpendicular to it will have gradient $-\frac{1}{m}$. Once you	(6,5).
	have found the gradient of the line parallel or perpendicular to the original line,	Answer: The gradient will be $\frac{-1}{3}$.

Page 15 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

	simply substitute the values of x , y and m into the equation of a straight	Now substitute into $y = mx + c$ to give $5 = \frac{-1}{3}(6) + c$			
	line $y = mx + c$ to find its equation. (This method is shown previously)	3			
	Not all equations will be in the form $y = mx + c$. For example, the line	This means $c = 7$ & the equation of the line $y = \frac{-1}{2} + 7$			
	y = 2x + 3 is parallel to the line $4y - 8x - 9 = 0$. Their gradients are the same.	3			
Graph Recognition	Linear: A straight line graph which can be written in the form $y = mx + c$	Linear			
	Quadratic: A parabola which is a sweeping curve in the form $y = ax^2 + bx + c$	Cubic Reciprocal 2			
	Cubic: A sweeping curve in the form $y = ax^3 + bx^2 + cx + d$	Quadratic			
	Reciprocal: A curve in the form $y = \frac{a}{x}$.				
	Recuprocal. A curve in the form $y = -1$.	$y = x y = x^2 y = x^3 y = \frac{1}{x}$			
Quadratic Graphs	This will be a parabola which is a sweeping curve & NOT a collection of lines.				
(Plotting from a	Simply Fill out the table (same as linear graphs). Be careful with negatives.	Line (or axis) of symmetry			
<u>Table</u>)	Squaring a negative makes it positive! Subtracting a negative will mean adding!				
	$y = x^2 - 3x + 1$				
	x -2 -1 0 1 2 3 4 5				
	y 11 6 1 -1 -1 1 6 11	0 2 4 Turning point			
Sketching Quadratic	You may be asked to sketch a quadratic graph from its equation instead of	Example 1: Sketch the graph of $y = x^2 - x - 6$ showing			
Graphs from an	plotting one from a table of values. This is a more complex skill.	any points of intersection with the coordinate axis.			
equation (Maximum,	A quadratic equation can be written in the form $y = ax^2 + bx + c$. The graph is	Answer: Factor to give $y = (x-3)(x+2)$.			
Minimum & Turning	called a parabola and is a curve with either a max or min turning point.	Roots: $x = 3$, $x = -2$			
<u>Points)</u>	The graph will cross the x axis when $y = 0$ and cross the y axis when $x = 0$.	y intercept: $(0,-6)$			
	Positive Quadratic Graphs Negative Quadratic Graphs	4 0 2 4			
	If $a > 0$ the graph will have a minimum If $a < 0$ the graph will have a maximum	2			
	2 / 0	Example 2: Sketch the graph of $y = x^2 - 6x + 2$ stating			
	2 0 2	the coordinates of the turning point, the equation of the			
		axis of symmetry and the roots of the equation.			
	In the Factored Form $y = (x-p)(x-q)$:	Answer: In completed square form $y = (x-3)^2 - 7$.			
	You can get the shape, find the roots (solutions) and find the y intercept easily.	x=3 Minimum point: $(3,-7)$			
	In Completed Square Form $y = (x+p)^2 + q$	Axis of symmetry: $x = 3$			
	You can get the shape, find the roots (solutions) and find the y intercept easily.	Roots: $x = 3 \pm \sqrt{7}$			
	You can also find the maximum/minimum turning point & the axis of	y intercept: $(0,2)$			
	symmetry				
	(More information on each technique is given in previous sections)	(3,-7)			

Page 16 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.


Sketching Cubic Graphs

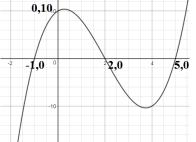
Cubic equations can be written in the form $y = ax^3 + bx^2 + cx + d$. Their graphs will produce a sweeping curve that passes through the *x* axis up to 3 times. The diagrams below show the difference between a positive & negative graph.

The diagrams below show the difference	e between a positive & negative graph.
Positive Cubic Graphs +	Negative Cubic Graphs -
If $a > 0$ the graph will enter in the	If $a < 0$ the graph will enter in the top
bottom left (3 rd quadrant) and leave	left (2 nd quadrant) and leave in the
in the top right region (1 st quadrant)	bottom right region (4 th quadrant)
-S 0 5	-5

Cubic graphs are easier to draw when factored in the form: y = (x - p)(x - r)(x - q). Here p, q and r are just numbers!

The graph will cross the x axis when y = 0 and cross the y axis when x = 0. If you take the equation y = (x-3)(x+2)(x-1) you can sketch the graph using the information given. This example is positive cubic (if you expand the brackets the first term will be x^3 rather than $-x^3$). The shape of this graph can be seen in the table above (+ example). Now consider where it crosses the x axis. This is when y = 0. This gives 0 = (x-3)(x+2)(x-1). Solving for each factor (like you would a quadratic equation) gives x = -2, x = 1 and x = 3. From here you can now plot the points (-2,0), (1,0) and (3,0). The graph will cross the y axis when x = 0. Substituting in this gives y = (0-3)(0+2)(0-1) which in turn gives y = (-3)(2)(-1) or y = 6. You can now plot the point (0,6). Finally draw the sketch as shown below.

Some cubic equations have repeated roots. An example is $y = (x-3)(x+5)^2$. The graph will touch the *x* axis at (-5,0) and pass through at (3,0)


Example 1: Sketch the graph of y = (x-5)(x-2)(x+1) showing any points of intersection with the coordinate axes.

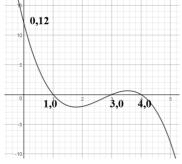
Answer: The cubic is positive. When y = 0 x = -1, x = 2 and x = 5. From here you can now plot the points (-1,0), (2,0) and (5,0).

When x = 0, y = (0-5)(0-2)(0+1) which gives y = 10.

You can now plot the point (0,10).

Finally sketch (not plot!) the curve.

Example 2: Sketch the graph of y = (3-x)(x-1)(x-4) showing any points of intersection with the coordinate axes.


Answer: The equation of cubic is negative.

When y = 0 x = 3, x = 1 and x = 4. From here you can now plot the points (3,0), (1,0) and (4,0).

When x = 0, y = (3-0)(0-1)(0-4) which gives y = 12.

You can now plot the point (0,12).

Finally sketch (not plot!) the curve.

<u>Asymptotes</u>	An asymptote will appear as a straight line on a graph. This broken line denotes	Example: Draw the asymptotes on the graph			
<u>Asympiotes</u>	the value(s) that the graph can never take. The asymptotes may be horizontal or	1			
	vertical and the curve will approach this line but never meet or cross it.	of $y = \frac{1}{x}$ shown below.			
	1	Answer: The broken lines show the lines $x = 0 & y = 0$			
	If you look at the graph $y = \frac{1}{x}$ for positive values of x, the lines				
	x = 0 (the y axis) and $y = 0$ (the x axis) are asymptotes.	$y = \frac{1}{x}$			
	As the value of x gets very large the graph will tend to 0 but never actually be	2			
	zero. 1 divided by a large number is very small but will never 'disappear'	y = 0			
	As the value of x gets very small (tends to 0), the value of y becomes very large				
	& eventually is undefined. $\frac{1}{6}$ is undefined. $1/1 = 1$, $1/0.1 = 10$, $1/0.01 = 100$ etc	\2			
	0	$\downarrow x = 0$			
<u>Inequalities</u>	x > 2 "x is greater than 2" This just means the number must be bigger than 2	(a) State 3 integers that satisfy $x > 4$			
	x < 3 "x is less than 3" This just means the number must be smaller than 3	You could have (for example) 5, 9 & 73. (it can't be 4)			
	$x \ge 1$ "x is 1 or greater" This means the number can be equal to 1 or bigger	(b) State 3 numbers that satisfy $x \le 3$. 3, 2.4, -1.7 etc			
	$x \le 6$ "x is 6 or less" This means the number can be equal to 6 or smaller	(c) State 3 integers that satisfy $-2 < x \le 4$			
	$-3 < x \le 2$ "x is greater than -3 yet in turn equal to or less than 2" (-2,-1,0,1,2)	You could have (for example) -1, 3 & 4. (it can't be -2)			
Set Notation for	You can use set notation to represent inequalities as shown below.	$\{ \}$ = The set of values $x = $ For $x := $ such that			
Solution Sets	You could represent $-3 < x \le 2$ as $\{x: -3 < x \le 2\}$	\cup =The union (and/or or both)			
(Inequalities)	You could represent $x < -5$ or $x > 5$ as $\{x : x < -5\} \cup \{x : x > 5\}$,			
Solving Linear	Use the same technique as you would for linear equations. Be careful! If \times or \div	E: Solve $2x-1>7$. A: Add 1 to each side $2x>8$.			
Inequalities	the inequality by a negative number the inequality sign changes direction.	Divide by sides by 2 to give the final answer $x > 4$			
Shading Regions	Shading inequalities allows us to find a 'region' (or set of points) that satisfy	Shade the region that satisfies $y > 2x$, $x > 1$ and $y \le 3$.			
(Linear Inequalities)	one or more linear inequalities (or constraints) given. An example might be to	-6 / y = 2x -6			
	shade the region that satisfies both $x > 5$ and $y > 4$.	y = 2x			
	All you need to do is draw the line of each equation given as decide which side				
	of the line to shade. If a strict inequality is used (for example $x > 2$) then you				
	must draw a broken line. For examples such as $x \le 6$ where 6 is included you				
	must draw a solid line.	/ x=1			
	Generally you will shade the region you want as the shaded area & label it 'R'	9 2 4 9 2 4 9 2 4			
	You can use the method shown to the right and shade at the end. If you find it	Draw the line Now add the Finally add the			
	easier you can shade as you go. Different colours may help!	y = 2x using a line $x = 1$ line $y = 3$ using a			
	The tricky thing is to shade the right region. For example, if you wanted to use	broken line. using a solid line.			
	the question to the right and you didn't know whether to shade above or below	broken line.			
	the line $y = 2x$ you could test the point (0,3) for example. Is 3 greater than 2 lots	Once you have done this decide where to shade. The			
	of 0 ?, yes it is. That means $(0,3)$ satisfies the inequality. This point is above the	shading will be to the right of the line $x = 1$, below the			
	line so you would shade that area. When it comes to horizontal line ($y = 1$ etc)	line $y = 3$ and above the line $y = 2x$. If you are unsure			

Page 18 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

	shading above the line is greater than and below the line is less than. For vertical lines ($x = 2$ etc) the area to the right is greater than and the area to the left is less than. When you have finished the part of the question on shading you may be asked to state/find all or some of the integer points that satisfy the inequalities. All you have to do is pick integer coordinates either inside the shaded region or on the solid lines enclosing it. Do not include the coordinates on any broken lines. Do not leave these questions out just because you don't understand the equations of the straight lines! Draw a table of values, plot the points and draw a straight line through them. The technique is shown in the section on drawing straight line graphs.	just test a point to check that it satisfies all 3 inequalities. This will give the final region shown below. $y = 2x$ $y = 3$ $x = 1$
Quadratic Inequalities	A quadratic inequality could be written in the form $ax^2 + bx + c \ge 0$. In order to find the set of points (or region) that satisfy the inequality you can factor the quadratic expression to find the critical values. The method of factoring used is the same as shown previously. Once you have factored the expression you will have the critical values. At this stage draw a little sketch of a parabola with the critical values and shade the required regions. If the expression is $> / \ge 0$ shade above the x axis (that's the line $y = 0$). If the expression is $< / \le 0$ then shade below the x axis. Be careful with the final notation used for inequalities Here are some examples below and a worked solution to the right: Solve: $0 > x^2 - x - 6$ $0 > (x - 3)(x + 2)$	Example: Solve the inequality $x^2 - x - 12 < 0$ Answer: Factor the quadratic to give $(x+3)(x-4) < 0$ This gives us the critical values of $x = -3$ and $x = 4$ Draw a sketch with these values: The required region is below the x axis $ \frac{-3}{4} $ The final answer is $-3 < x < 4$. (3 & 4 are excluded)
Graph Transformations (Translations)	If the graph of a function is translated it is simply moved. The graph doesn't change shape, 'size' or orientation (which was around it is). If you start with the graph of $y = f(x)$ you can translate horizontally (left and right or in the x direction) or vertically (up and down or in the y direction). Horizontal Translations: $y = f(x-a)$ moves a units to the left. In vector form this would be a translation of $\begin{pmatrix} a \\ 0 \end{pmatrix}$. So, $f(x-3)$ moves right by 3 and $f(x+1)$ moves right by 1.	Example: The graph below shows part of the curve $y = f(x)$ Sketch the graphs of: (a) $y = f(x-1)$ (b) $f(x)+2$ (c) $y = f(x+3)+1$ Answer: (next page)

Page 19 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

	Vertical Translations: $y = f(x) + a$ moves up by a units. In vector form this would be a translation of $\begin{pmatrix} 0 \\ a \end{pmatrix}$. So, $f(x) + 5$ moves up by 5 and $f(x) - 4$ moves down by 4. Tip! If the number is on the outside, the y coordinates change. If the number is on the inside the x coordinates change! Look out for combined translations too!	(a)	0 0 2 0 0 2 4	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Graph Transformations	If the graph of a function is reflected, it will be mirrored in one of the coordinate axis. The shape doesn't change.	Example: Using the	0 1	x) in the section
(Reflections)	If you start with the graph of $y = f(x)$ you can reflect this in the x or the y axis.	above, sketch the g (a) $y = -f(x)$		(c) $y = f(-x)$
		Answer:	(0) 9 1(3)	(c) y 1(x)
	Reflected in the y axis: $y = f(-x)$ is a reflection in the y axis. The y coordinates remain the same but the x coordinates become negative.	-2 0 2 4	-8	4 2 0 2
	Reflected in the x axis: $y = -f(x)$ is a reflection in the x axis. The x coordinates		4	-4
	remain the same but the y coordinates become negative.	-4	2	-6
	Tip! If the number is on the outside, the y coordinates change. If the number is		4 2 0	
	on the inside the <i>x</i> coordinates change!	(a)	(b)	(c)
<u>Graph</u> <u>Transformations</u>	If the graph of a function is stretched its shape is changed. A graph can be stretched either in the <i>y</i> direction (vertically) or the <i>x</i> direction (horizontally).	Example: Using the above, sketch the g		x) in the section
(Stretches)	If you start with the graph of $y = f(x)$ you can stretch this in the x or	(a) $y = 2f(x)$		(c) $y = 0.5 f(3x)$
	the <i>y</i> direction.	Answer:		
	Stretched in the x direction:	-8	6	
	$y = f(ax)$ is a stretch, scale factor $\frac{1}{a}$ in the x direction.	6		
	Simply divide the x coordinates by a . The y coordinates do not change.	4	4	4
	Stretched in the <i>y</i> direction:		2	
	y = a f(x) is a stretch, scale factor a in the y direction.	2		2
	Simply multiply the y coordinates by a . The x coordinates do not change.			
	Tip! If the number is on the outside, the y coordinates change. If the number is	0 2 4	0 2	0 2 4
	on the inside the x coordinates change!	(a)	(b)	(c)

Page 20 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Tangents to Curves (Estimating Gradients and rates of change)

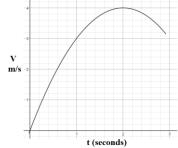
Chords (Gradients and Average rates of change)

A tangent is a straight line that will touch a curve at a point. You may be asked to estimate the gradient of a tangent to a curve at a given point.

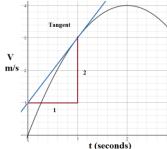
You have seen in a previous section how to find the gradient of a straight line. And you are simply going to apply this to a given curve.

Once the tangent has been drawn you can find the gradient by counting the squares up or down and left or right.

In the example to the right you can see the tangent 'goes up 2' for every '2 it goes across to the right'. The gradient is therefore +2.


Often you will be asked to state what this represents in the context of the question. In the example to the right, **the rate of change** of the velocity is the acceleration.

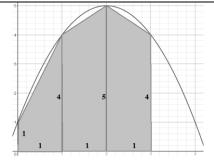
If you have a distance/time graph the tangent will give an estimate for the velocity at a given point. This is the instantaneous rate of change.


You may also be asked about the average rate of change. To do this, simply draw a chord between the two values given and estimate the gradient of the chord. This will be different from the instantaneous rate of change at a given point.

A chord is a straight line that connects two sets of coordinates rather than touching the curve at a given point like a tangent. Chords and tangents on curves are the same as they are on the circles you will have met in maths!

Example: The graph shows the velocity of a particle. By drawing a tangent to the curve, estimate the rate at which V is increasing after 1 second

Answer: Drawing a tangent & estimating the gradient


You can see that the gradient from the graph is 2. This represents the acceleration which will be $2m/s^2$

Area Under Curves

You can **estimate** the area trapped under a curve by drawing a collection of trapezia with equal heights (the height will be the difference in the *x* coordinates). The more trapezia you draw, the more accurate the estimate becomes. (You will be told how many trapezia you need to draw).

To start with, draw a chord (a straight line) between the x coordinates on the curve to make the top of the trapezia. Once these have been draw it's just a case of finding the area of each trapezium and adding them as shown to the right. In this example The area trapped under the curve for $0 \le x \le 3$ has been drawn with 3 trapezia.

The first chord is drawn from the point on the curve where x = 0 and y = 1 to the point where x = 1 and y = 4. The second chord from where x = 1 and y = 4 to the point where x = 2 and y = 5. The final chord is drawn on the curve from the point where x = 2 and y = 5 and the point where x = 3 and y = 4.

Area of the 1st trapezium: $\frac{1+4}{2} \times 1 = 2.5$

Area of the 2nd trapezium: $\frac{4+5}{2} \times 1 = 4.5$

Area of the 3rd trapezium: $\frac{4+5}{2} \times 1 = 4.5$

Total **estimated** area: 2.5 + 4.5 + 4.5 = 11.5

G	T 1 . C	41 C N	r 1				1 4 0 1	C 05 0	. 10			
Sequences (News)	Look out for						1, 4, 9, 16, 25, 36, 49					
(Number Patterns)								1, 8, 27, 64, 125, 216				
	-							0, 1, 1, 2, 3, 5, 8, 13, 21, 34(add the 2 previous terms)				
								Increases or decreases by fixed amount. (+ or –) Has a common ratio or constant multiplier (× or ÷)				
C N							1					· ·
Sequence Notation	A sequence n							• • • • • • • • • • • • • • • • • • • •	3n+1. Fin		-	
<u>& Finding Terms</u>	sequence. The			<u> </u>			When n	$=1, u_1=$	=4, n=2	$\therefore u_2 = 7$, n = 3 : 1	$u_3 = 10$
nth Term Formula	A linear or ar				•				he <i>nth</i> terr			
of a Linear	This might be				-	time'	Answer:		a little tab	le with th	ne term in	:
(Arithmetic)	To find the <i>nt</i>								$n \mid 1 \mid$	2 3	4	
<u>Sequence</u>	(1) Find the d			_		n time?)	(TD)	Ŀ		7 11	15	1
	(2) Multiply (-	_			_		increasing	-		-
	(3) Use value		_						take $n =$			
	(4) Find what	•			find t . Test it	for all terms			1 to get 3		_	
	This method								the seque			
<u>Geometric</u>	Geometric se						Example	e: Find t	he next 3	terms in	the seque	nce: 4, 12,
<u>Sequences</u>	the terms in t	*		•		•						
	number each											
	common ratio		_		•		108 by 3 Giving 324 and multiply by 3 again to give					
	find the comr	non ratio by o	lividing a terr	n by the prev	ious one. 6/3	= 2, 12/6 = 2	972.					
nth Term of a	Quadratic sec	juences can b	e written in th	ne form $u_n = a$	$an^2 + bn + c$.		_		formula			the
Quadratic Sequence	An example of	of a quadratic	sequence is 5	5. 18. 37. 62.	93		quadratic sequence: 4, 7, 14, 25, 40					
	To find the va	_	_			elow:	Answer: The first difference: 3, 7, 11, 15 and the					
	(i) Find the fi		•		*		second difference: 4, 4, 4 This gives us $a = 2$ as you					
	First differen						have to h	alf 4 to	get the qu	adratic p	art of the	sequence.
	(ii) Half the s						n	1	2	3	4	5
	(iii) Now set				-		t	4	7	14	25	40
	n		2	3	$\frac{11 \text{ value of } n}{4}$	5	$2n^2$	2	8	18	32	50
	<i>n</i>	5	18	37	62	93	Now find	the line	ear part of	the sequ	ence bn +	c subtract
	$\frac{l}{2}$	3	12	27	48	75	the quad	ratic par	t from the	_		
	$3n^2$				l .		$t-2n^2$	2	-1	-4	-7	-10
	(iv) Now find	-	rt of the sequ	ence $bn + c$ su	ibtract the qua	adratic part				th term of	f the lines	r sequence
	from the sequ		6	10	1.4	10			mu men	iii terrii Or	i ilie illiea	i sequence
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						2, -1, -4, -7, -10. This is decreasing by 3 each time giving us the					
			•			-				_	_	
	will give $4n$				om the table a	bove.	_		n+5. Then			
	The final answer is therefore $u_n = 3n^2 + 4n - 2$							is $u_n = 2n^2 - 3n + 5$. Now check it works with values!				

Page 22 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

<u>Fibonacci Like</u> <u>Sequence</u>	The original Fibonacci Sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 It starts with 0 and forms terms by adding the two numbers before it.	Example: Find the next 3 terms: 4, 10, 14 Answer: 24, 38, 62 (Just add the previous two terms)
Algebraic Fractions (Simplifying)	Look for the highest common factor of numbers and algebraic terms. The rules of indices and factoring expressions will help you simplify algebraic fractions.	Example: $\frac{x^2 + x - 6}{2x - 4} = \frac{(x+3)(x-2)}{2(x-2)} = \frac{(x+3)}{2}$
Algebraic Fractions (Multiplying)	The main thing to remember is to cancel as many common factors as you can. The question you get may or may not require some factoring.	Example 1: Simplify fully $\frac{3p^7}{q^3r} \times \frac{4r^2}{15pq}$ Answer: $\frac{4p^6r}{5q^4}$
	Any easier example could be "Simplify fully $\frac{8x^4}{y^3} \times \frac{x^2y^5}{4}$ ".	Example 2: Simplify fully $\frac{x^2 + 2x - 8}{2x - 6} \times \frac{x^2 + x - 12}{5x - 10}$
	Let's start with the 8 divided by 4. This will cancel to give $\frac{2x^4}{y^3} \times \frac{x^2y^5}{1}$.	Example 2: Simplify fully $\frac{x^2 + 2x - 8}{2x - 6} \times \frac{x^2 + x - 12}{5x - 10}$ Answer: Factor first: $\frac{(x + 4)(x - 2)}{2(x - 3)} \times \frac{(x + 4)(x - 3)}{5(x - 2)}$
	Now you can combine the powers of x and write the single fraction $\frac{2x^6y^5}{y^3}$.	Now cancel common factors: $\frac{(x+4)}{2} \times \frac{(x+4)}{5}$
	Lastly, simply have to cancel the terms in y to give a final answer of $2x^6y^2$. $x^2 - x - 6$ $x + 5$	Finally, simplify to give $\frac{(x+4)^2}{10}$.
	A harder example may need factoring such as $\frac{x^2 - x - 6}{4x + 8} \times \frac{x + 5}{x^2 - 9}$. You need to factor as much as you can to give: $\frac{(x - 3)(x + 2)}{4(x + 2)} \times \frac{(x + 5)}{(x + 3)(x - 3)}$. Now you can cancel the common factors of $(x + 2) & (x - 3)$ to give $\frac{1}{2} \times \frac{(x + 5)}{2}$.	Example 3: Simplify fully $\frac{2x^2 - 11x + 12}{x^2 - 25} \times \frac{(x+5)^2}{2x-8}$
	You need to factor as much as you can to give: $\frac{(x-3)(x+2)}{4(x+2)} \times \frac{(x+3)}{(x+3)(x-3)}.$	Answer: Factor $\frac{(2x-3)(x-4)}{(x+5)(x-5)} \times \frac{(x+5)(x+5)}{2(x-4)}$
	4 $(x+3)$	Cancel common factors and simplify $\frac{(2x-3)(x+5)}{2(x-5)}$
	This can be tidied, giving a final answer of $\frac{(x+5)}{4(x+3)}$ in its simplest form.	Try and leave the final answer factored where you can.
Algebraic Fractions (Dividing)	The technique is similar to multiplying. To start with though you must invert the second fraction and multiply. At this stage you can start cancelling down!	Example: "Simplify fully $\frac{4p}{5q^2} \div \frac{2p^2r}{15q^3}$ "
	The example $\frac{6p^5}{q^2r} \div \frac{3r^4}{p^3q^5}$ could be written as $\frac{6p^5}{q^2r} \times \frac{p^3q^5}{3r^4}$. At this stage you	Answer: $\frac{4p}{5q^2} \times \frac{15q^3}{2p^2r} = \frac{2}{1} \times \frac{3q}{pr} = \frac{6q}{pr}$
	would use the techniques shown above in multiplying algebraic fractions. This would give a final answer of $2p^8q^3r^5$ in its simplest form. With any algebraic	$(n-1)$ n^2-1
	fraction, look out for the difference of two squares or expressions that can be factored. An example could be $25x^2 - 9 = (5x + 3)(5x - 3)$. This may allow you	Example 2: "Simplify fully $\frac{(p-1)}{q^2-q-6} \div \frac{p^2-1}{2q-6}$ "
	to cancel a factor that was not originally obvious. Factoring can also help reveal common factors. An example could be $10x-15 \equiv 5(2x-3)$. If you have the	Answer: $\frac{2}{(p+1)(q+2)}$
	factor $(2x-3)$ somewhere else in the fraction you could look to simplify.	(Look out for the difference of 2 squares as above)

Page 23 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Algebraic Fractions	Like with normal fractions you must have a common denominator This is simply the LCM of the expressions or terms in the denominators of each of the					Example 1: "Simplify fully $\frac{4p}{5q^2} + \frac{2r}{3}$ "
(Adding and Subtracting)+Solvin g Equations with	= -	's look at an exam			Answer: $\frac{4p(3) + 2r(5q^2)}{15a^2} = \frac{12p + 10q^2r}{15a^2}$	
<u>Fractions</u>	_	here would be the	*		15q $15q$	
	-	this stage you set $(2x)($		Example 2: "Simplify fully $\frac{5}{(x-2)} - \frac{4}{(x-3)}$ "		
		aple could be: "S	-) ~		to $\frac{6xz - 5y^4}{3y^3z}$.	Example 2: "Simplify fully $\frac{5}{(x-2)} - \frac{4}{(x-3)}$ " Answer: $\frac{5(x-3)-4(x-2)}{(x-2)(x-3)} = \frac{x-7}{(x-2)(x-3)}$
	denominator	will be $(x-1)(x-1)$	+4). You can no	w form a single f	raction starting	Example 3: "Simplify fully $\frac{p}{p^2-9} + \frac{p-4}{p-3}$ "
		fraction $\frac{1}{(x-1)(x-1)}$ e 7 by $(x-1)$. The	· ·			Answer: $\frac{p}{(p+3)(p-3)} + \frac{p-4}{(p-3)} = \frac{p+(p+3)(p-4)}{(p+3)(p-3)}$
		simplify: $\frac{2x+8-6}{(x-1)}$	`	which gives $\frac{p^{-12}}{p^2-9}$ in simplified form.		
						With Example 3 the difference of 2 squares was used to factor the denominator.
Algebraic Proof	The common denominator of x and x^2 is x^2 . Try it with $x = 3$. You have $3 \& 9$. A proof is an argument to justify a mathematical statement. When writing a proof you must show that the statement holds true for all cases not just select certain values and conclude it must be true for all values. The way to do this is to write out and manipulate algebraic expressions and identities to form your proof. Let's start with some basic expressions for numbers					Exam 1: Show that the difference between the squares of 2 consecutive odd integers is always a multiple of 8. Answer: Let the first of the 2 numbers be $2n-1$ & the second $2n+1$. Square each to give $(2n+1)^2$ & $(2n-1)^2$.
	n	2 <i>n</i>	2n+1 or $2n-1$	2n+2	2n+3	Difference means subtract: $(2n+1)^2 - (2n-1)^2$. Expand brackets to give $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$.
	an integer	an even integer	an odd integer	the next even integer after 2n	the next odd integer after $2n+1$	Simplify to $8n$ by cancelling the terms. Conclude with the statement " $8n$ is a multiple of 8 ." true for all consecutive odd integers."
		sions like those a	_	Example 2: Show that product of any two odd		
	must include the right. Sim not prove a s	plifying and reface a concluding state aply showing iso statement is true	ement to end the lated cases hold for all values. Y	numbers is always odd. Answer: Let the first number be $2n-1$ and the second $2n+1$. Multiplying: $(2n-1)(2n+1) = 4n^2 - 1$ $4n^2$ is always even as it's a multiple of $4 : 4n^2 - 1$ is		
		s. The only time rue with a counter		odd for all values of n .		

<u>Functions</u>	A function is just a rule that maps one number to another. A function will have	Example 1: $f(x) = 3x - 1$.
(Evaluating)	an input (such as x) and an output (such as y). An example could be $y = 2x$.	Find (or evaluate) (a) $f(5)$, (b) $f(-1)$ and (c) $f(p)$.
	Instead of writing $y = 2x$ you could use function notation and write $f(x) = 2x$.	Answer: (a) 14, (b) -4 and (c) $3p-1$
	f(x) just means " y is a function of x". You can evaluate functions by	Example 1: $g(x) = 1 - 4x$. Given that $g(t) = 15$, find
	substituting numbers in. If $f(x) = 2x$ you can say $f(5) = 2(5)$ which of course	the value of t .
	means $f(5) = 10$. Evaluate simply tells you to swap x for the number(s) given.	Answer: Don't worry about it being $g(x)$! Simply
	You can work backwards and find an input for functions given an output. An	substitute in to give $15 = 1 - 4t$. Solving for t , $4t = -14$
	example using $f(x) = 2x$ could be: Find the value of a such that $f(a) = 14$. All	and $t = -\frac{7}{2}$
	you need to do is substitute $x = a$ in and solve: $2a = 14$ which of course	2
E	gives $a = 7$.	
Functions (Composite)	A composite function simply requires you to substitute one function into	Example 1: Using the functions $f(x) = 1 - x$ and
(Composite)	another. If you have two functions, for example, $f(x) = x^2 - 1$ and $g(x) = 3x$ you	$g(x) = x^2$ find: (a) gf(5) (b) fg(1) (c) ff(p)
	can form the composite functions $fg(x)$ or $gf(x)$. (You could have $ff(x)$ if you	Answer: (a) gf(5) (b) fg(1) = 0 (c) ff(p) = $(1-p)^2$
	liked). $fg(x)$ means "do g first and then f" whereas $gf(x)$ means "do f first and	Example 2: $f(x) = x + 2$, $g(x) = \frac{1}{x}$ and $f(x) = x^3$.
	then g ". An example could be: Find (a) fg(2) and (b) gf(2). Answer: (a) Start	\mathcal{X}
	with g(2). Using the function, g(2) = 6. Now do f(6). This will give $f(6) = 35$.	Find fhg(0.5)
	For part (b) start with $f(2)$. This gives $f(2) = 3$. Now do $g(3) = 9$.	Answer: $fhg(0.5) = 10$
Functions (Inverse)	The inverse function $f^{-1}(x)$ undoes the effect of the original function $f(x)$. To	Example: $f(x) = (1-2x)^5$ Find the inverse $f^{-1}(x)$.
	find the inverse function of a function, write the equation out as $y = f(x)$ swap	Answer: Let $y = (1-2x)^5$. Now swap the x's and y's
	the x 's and y 's over in the original function and then set about making y the	over to give $x = (1-2y)^5$. Rearrange to give
	subject by rearranging.	$1-\sqrt[5]{x}$ grade $1-\sqrt[5]{x}$
	An example could be $f(x) = \sqrt{1 + x^3}$.	$y = \frac{1 - \sqrt[5]{x}}{2}$. The final answer will be $f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$
	Write $y = \sqrt{1 + x^3}$, now swap to give $x = \sqrt{1 + y^3}$. Now rearrange to give	
	$y = \sqrt[3]{x^2 - 1}$. At this stage you need to write $f^{-1}(x) = \sqrt[3]{x^2 - 1}$.	A function can only have an inverse if it's 1-2-1 for the set of values you are considering. You will study this
	It's important you give your final answer in the form $f^{-1}(x)$	later on.

Using a Calculator

Using a Casio	Using a calculator effectively can really help in exams. Some basic tips:	nomical signal	
Calculator	Make sure you are in Degrees and Math mode. The letter D will be at the top of		
	the screen (Shift mode 3 gets you there) and the word Math. Find		D and Math are ci
	the $S \Leftrightarrow D$ button to convert from a fraction to a decimal. Shift followed	950555 909955 739 <u>5</u>	
	by $\times 10^x = \pi$. Hit, , ,, & it will convert the answer into hours, minutes & seconds	789 6 436×+ 123+ 123+	

circled to the right!

Page 25 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Statistics

Mean (Basic Average)	Add all of the values (including 0s), divide by how many values there are. Tip! You might need to work this backwards to find missing values in the data.				The mean of 3,4,7,	$6,0,4,6$ is $\frac{3+4+7}{}$	$\frac{7+6+0+4+6}{7} = 5$		
Mean from a Table (Estimated and Actual)	When grouped data is used we get an estimated mean average. (i) Find the midpoint of each class. (Shown in the 3 rd column below) (ii) Multiply Frequency by Midpoint. (Shown in the 4 th column below) (iii) Add these values up. (Shown in the Total box on the right)				If the data is not g (i) Multiply the fre (ii) Add all of these (iii) Divided this (1)	quency by given v e values up.	ralues.		
	(iii) Divided that	at total (450) b	y the sum o	of the frequence	cy (24). (Botto	om of 2 nd)	Goals in Game	Frequency	$F \times Goals$
	Height in cm	Frequency	Midpoint	$F \times M$	7		0	3	3×0=0
	$0 < h \le 10$	8	5	8×5=40	Estimated		1	5	5×1=5
	$10 < h \le 30$	10	20	10×20=200	height: 45 0) ÷ 24 =	2	4	4×2=8
	$30 < h \le 40$	6	35	6×35=210	18.75cm		3	12	1×3=3
	Total	24	Ignore!	450			Total	13	16 : 12 1 22
	L						Actual Mean goals	, v	16 - 13 = 1.23
Median Value	The middle val						Find the median: 4		_
(another average)	If there are two						in order 2,3,4, <u>5</u> ,6,6		
Mode / Modal #	The number/cla					ient'	4,5,2,3,6,4,7,8,4, N		±
Range	The highest val						3, 31, 26, 102, 37,		
Pie Charts	A pie chart is a			•		_	If there are 40 peop		
	divide 360 by the	_	•	•	, .		-	1	0 = 9. Just multiply
	for each person or item in your table. Use a 360 degree protractor to draw one!					each number in the	2	k out the total	
TT: 0 : 0 1					degrees for each se		requency Polygon		
Time Series Graphs	Time Series Graphs shiply shows data confected over time. Time is protted on								
and	the nortzontal axis. Points are plotted and straight lines connect the points.								
Frequency Polygons	These look similar to frequency polygons but are very different. Frequency Polygons are similar to histograms and show the frequency for								
and Diagrams	grouped data.						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	0 1	• •					Months (2016)	5 6 2	Height (cm)
Moving Averages	A moving avera						lag I		
	They are plotted		nt of the 3	months (as pe	er example)		2.0	Movi	ng Average
	Month Ja		Mar	Apr	May	June	20		
	Sales 18 16 22 24 20 19				19	a 115	Time Series		
	When calculating drop the first value and add the next value					e .			
	Months Jan, Feb & Feb, Mar Mar, Apr & Apr, May &			10					
		Mar		Apr	May	Jun	5		
	3 Point	$\frac{18+16+22}{3}=18.$	$7 \mid \frac{16+22+}{}$	$\frac{24}{}$ = 20.7 $\frac{22+}{}$	$\frac{24+20}{3} = 22$	$\frac{1+20+19}{2} = 21$			
	Moving Average	3	3		3	3	1	F M A M Month	3
	Average							Month	

Page 26 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Scatter Graphs and Correlation (and Line of Best Fit)	Scatter graphs plot data in pairs ice cream sales or the age of a c Positive Correlation: As one v Negative Correlation: As one v No Correlation: There is no lin If you are asked to find estimate best fit and read up and across f	car and the value of the car. value increases, the other incre value increases the other decre near relationship between the es from a scatter graph you must	eases. eases. two.	Positive Correla	Line of Best Fit of X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x
Line of Best Fit x, y	The line of best fit passes through	gh \bar{x} , \bar{y} where \bar{x} = mean of x &	$\frac{-}{y}$ = mean of y	Find \bar{x} , \bar{y} and \bar{y}	draw the line of	of best fit throug	gh this point.
Outliers	Points on the scatter graph that	don't follow the pattern of the	other points	An example i	s shown on th	e second graph	above
Interpolation and Extrapolation	Interpolation is using the line of Extrapolation is using the line set. You must be careful when early the points will either be wrongly right shows an example of a reg	of best fit to estimates values of extrapolating as the estimate maly collected or anomalies. The	outside the data ay not be accurate diagram to the		Positive Co	Example of extrapolating Example of tutopolating regulation	
<u>Pictograms</u>	Pictograms are a convenient vis	sual way of representing data. T	They are similar	Example: Th	e pictogram b	elow shows 10	black 12
	to bar charts. Make sure you have	• ,	*	red, 2 green &	t 16 others for	r the colours of	car surveyed
	half a picture but don't try and o				Black 🚍 🚍 🗗	i = }	
	you to work backwards and find the key to help you with this.	d missing values instead of drav	wing them. Use		Green 🗲	= 4 cars	
Standard and Back	Standard	Back to Ba	nck	Example: Us	others 🖨 🖨 🗗	back stem and l	eaf diagram
to Back Stem and	0 1, 4, 8	Boys Girls	Key	_		n score and rang	_
Leaf Diagrams	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5= 25 for Girls			3 and Range = 3	
	3 0, 1, 4, 6, 6, 9	2, 0 2 2, 5, 8, 4 3 0, 1, 4, 6, 6, 9	ioi diris		-	ir key and note	-
	The study of 1 data set.	The study and compariso	on of 2 data sets.	differs on eith	er side of the	back to back ex	ample.
		The stady and companies					
Two Way Tables	Two way tables allow us to mod			Question: Co	mplete the 2	way table below	<i>'</i> .
Two Way Tables	•	del situations where there are ty	wo variables		Left Handed	way table below Right Handed	Total
	Two way tables allow us to mod	del situations where there are to right there is gender and wheth	wo variables her the person is	Boys		_	
	Two way tables allow us to mod involved. In the example to the	del situations where there are to right there is gender and wheth t the information step by step u	wo variables her the person is sing the values		Left Handed	_	Total
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the q for each row and column! Often	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the question	wo variables her the person is sing the values ne totals add up	Boys Girls Total	Left Handed 10	Right Handed	Total 58
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the q for each row and column! Often as you may think you are missing	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information.	wo variables her the person is sing the values ne totals add up stion. Check this	Boys Girls Total Answer: Step	Left Handed 10 1, fill out the Left Handed	Right Handed 84 easy parts (the Right Handed	Total 58 100 totals) Total
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the q for each row and column! Often as you may think you are missing You may be asked to work out so	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information.	wo variables her the person is sing the values ne totals add up stion. Check this	Boys Girls Total Answer: Step Boys	Left Handed 10 1, fill out the	Right Handed 84 easy parts (the	Total 58 100 totals) Total 58
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the q for each row and column! Often as you may think you are missin You may be asked to work out so the table. Make sure you read the	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information. some questions on probability the question correctly!	wo variables her the person is sing the values ne totals add up stion. Check this or fractions from	Boys Girls Total Answer: Step	Left Handed 10 1, fill out the Left Handed	Right Handed 84 easy parts (the Right Handed	Total 58 100 totals) Total
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the q for each row and column! Often as you may think you are missing You may be asked to work out the table. Make sure you read the A question might be "One person	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information. some questions on probability one question correctly!	wo variables her the person is sing the values ne totals add up stion. Check this or fractions from s the probability	Boys Girls Total Answer: Step Boys Girls	Left Handed 10 1, fill out the Left Handed 10 16	Right Handed 84 easy parts (the Right Handed 48	Total 58 100 totals) Total 58 42
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the quarter for each row and column! Often as you may think you are missing You may be asked to work out the table. Make sure you read the A question might be "One person that the person is left handed given."	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information. some questions on probability on e question correctly! on is chosen at random. What is re?" You would simply find the	wo variables her the person is sing the values ne totals add up stion. Check this or fractions from s the probability e number of left	Boys Girls Total Answer: Step Boys Girls Total Step 2, fill ou	Left Handed 10 1, fill out the Left Handed 10 16 t the remainin Left Handed	Right Handed 84 e easy parts (the Right Handed 48 84 g parts Right Handed	Total 58 100 totals) Total 58 42 100 Total
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the quarter for each row and column! Often as you may think you are missing You may be asked to work out so the table. Make sure you read the A question might be "One person that the person is left handed girls (which is 6) and direction of the table in the person is left handed girls (which is 6) and direction of the table in the person is left handed girls (which is 6).	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information. some questions on probability the question correctly! on is chosen at random. What is rl?" You would simply find the ivide that by the total (which is	wo variables her the person is sing the values ne totals add up stion. Check this or fractions from s the probability e number of left 100). The	Boys Girls Total Answer: Step Boys Girls Total Step 2, fill ou Boys	Left Handed 10 1, fill out the Left Handed 10 16 t the remainin Left Handed 10	Right Handed 84 e easy parts (the Right Handed 48 84 g parts Right Handed 48	Total 58 100 totals) Total 58 42 100 Total 58
	Two way tables allow us to mode involved. In the example to the left or right handed. Just fill out given either in the table or the quarter for each row and column! Often as you may think you are missing You may be asked to work out the table. Make sure you read the A question might be "One person that the person is left handed given."	del situations where there are to right there is gender and wheth the information step by step unquestion and make sure all of the none value is given in the questing some information. some questions on probability on the question correctly! on is chosen at random. What is re?" You would simply find the livide that by the total (which is you could simplify the fraction to	wo variables her the person is sing the values ne totals add up stion. Check this or fractions from s the probability e number of left 100). The to give 3/50.	Boys Girls Total Answer: Step Boys Girls Total Step 2, fill ou	Left Handed 10 1, fill out the Left Handed 10 16 t the remainin Left Handed	Right Handed 84 e easy parts (the Right Handed 48 84 g parts Right Handed	Total 58 100 totals) Total 58 42 100 Total

Page 27 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Sampling	A Population is a set of items of interest.	Example: A random sample could be picking the		
(Definitions)	A Census is a survey that covers the entire population.	names of 10 people out of a hat that has 100 names in.		
	A Sample is a small selection of items from the population. (10% + is ideal)	Each person has an equally likely chance of being		
	In a Random Sample each item has the same chance of being chosen.	picked.		
	A sample is Biased if individuals or groups from the population are not			
	represented in the sample.			
Simple Random	In a random sample each item has an equal chance of being chosen. This may	Example: This could be picking the names of 10		
<u>Samples</u>	be using a table of random numbers	people out of a hat from a class of 30 students.		
Stratified Sampling	When a stratified sample is taken it's proportional to the population it comes	Example: A sample stratified by year group of 70 is		
	from. Each strata (or layer) will provide a number of items for the sample based	taken. Find out how many students from each year		
	in its size relative to the overall population.	should be in the sample:		
	To find out how many items from each strata are needed, simply multiply the	Year Number of Students		
	number in the strata by the (sample size ÷ population).	Year 7 210		
	When you have a value, write it in your answer and round it up or down if	Year 8 230 Year 9 190		
	necessary. Make sure when you round your values you end up with the correct	10al y 170		
	number in the sample!	Answer: You need 70 in the sample out of a total of		
	In the example to the right the first and the last numbers have been rounded	_		
	down and the middle number rounded up. This gives the 70 required. Use logic	630 students. : multiply each strata value by $\frac{70}{630}$		
	if you need to round.	Year # of Students Calculation # in Sample		
	Number in smaple = Number in layer $\times \frac{Sample\ size}{Population}$	Year 7 210 $\frac{70}{210 \times \frac{70}{630}} = 23.33$ 23		
	Population	630		
	Or	Year 8 230 $230 \times \frac{70}{630} = 25.55.$ 26		
	Number in smanle – Number in layer	630		
	$Number in smaple = \frac{Number in layer}{Population} \times Sample size$	Year 9 190 $_{190 \times \frac{70}{630} = 21.11}$ 21		
	These two calculations are essentially the same thing.	630		
<u>Cumulative</u>	Cumulative frequency is a running total. Study the frequency table below.	Example: Complete the cumulative frequency table.		
<u>Frequency Table</u>	Age Frequency	Height Frequency Cumulative Frequency		
	$0 < a \le 10$ 15	$0 < h \le 5$ 4		
	$10 < a \le 40$ 35	$5 < h \le 20$ 8		
	$40 < a \le 50$ 10	20 < h ≤ 30 9		
	You can add a 3 rd column to show the running total (cumulative frequency).	30 < h ≤ 50 23		
	Age Frequency Cumulative Frequency	Answer:		
	$0 < a \le 10$ 15 15	Height Frequency Cumulative Frequency		
	$10 < a \le 40$ 35 $15 + 35 = 50$	$0 < h \le 5$ 4 4		
	$40 < a \le 50$ 10 $50 + 10 = 60$	5 < h \le 20 8 12		
	The CF shows there are 15 people aged 0-10, 50 people aged 0-40 and 60	$20 < h \le 30$ 9 21		
	people aged 0-50. Simply add the totals before to get the cumulative frequency.	30 < h ≤ 50 23 44		

Page 28 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Cumulative Frequency Graph	Using a completed cumulative frequency table (as shown previously) allows you to draw a cumulative frequency curve . The points are plotted at the end of the class interval (upper class boundary) and a sweeping curve is drawn through the points as show to the right. The class interval is drawn on the horizontal axis and the cumulative frequency on the vertical axis. Make sure you label each axis correctly.	40- 30- CF 20- 10- 0 10 20 30 40 50 Height
Lower Quartile (Q1), Median (Q2), Upper Quartile (Q3) and IQR (See previous and next video) Drawing Box Plots	Lower Quartile (Q1): 25% of the values in the data set are less than the value of the LQ. To find an estimated value ÷ the data set (44 here) by 4 and read across and down on the graph as shown to the right. (In the case shown it will be from the 11 th value). The LQ is not 11. It's ~18-19 in the case to the right! Median (Q2): 50% of the values in the data set are less than the value of the median. To an estimated value ÷ the data set (44 here) by 2 and read across and down on the graph as shown to the right. (In the case shown it will be from the 22 nd value). The median is not 22. It's about 30 in the case to the right! Upper Quartile (Q3): 75% of the values in the data set are less than the value of the UQ. To find an estimated value ÷ the data set by 4 and × 3 and read across and down on the graph as shown to the right. (In the case shown it will be from the 33 rd value). The UQ is not 33. It's about 38 in the case shown! Interquartile Range IQR: represents the 'middle 50% of the data set. The IQR is found by calculating the Upper Quartile - Lower Quartile (Q3-Q1). In the case shown an estimated will be 37-18 = 19. This shows that 50% of the items in the data set were within a range of 19 units. A box plot is a convenient, visual way of representing the 5 main summary statistics. The lowest value, the lower quartile, the median, the upper quartile and the highest value are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency curve if you are also given a maximum and minimum value either in the question or you can work it out. The first vertical line is the lowest value, the 2 nd the LQ, the 3 rd is the median, the 4 th is the UQ and the final vertical line is the highest value in the data set. The 'box' represents the middle 50% of the data. The range can be found by calculating the higher value – lowest value. The Range and IQR are measures of spread and the median is an average. Box plots allow the reader to way of compare data sets.	Value of UQ taken from 33rd = 37 Value of Medidan taken from 22nd = 30 Value of LQ taken from 11th = 18 10 20 30 40 50 Height A box plot could be drawn off the bottom of this CF curve using the lines from the LQ, M and UQ but you will need the lowest and highest values too. Example: The students in class X1 sat maths test. The test was out of 25. The highest score was 19, the lowest score was 8, the median score was 14, the lower quartile was 10 and the upper quartile was 17. Draw a box plot to represent the information. Answer: Example: The students in class Y1 also sat the maths test. Compare the results of the two classes using the
	be compared and commented on.	box plots below.

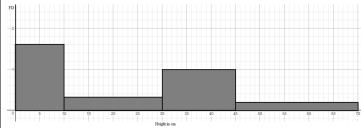
Page 29 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

The two areas to focus when comparing box plots are:

- (1) The **average** using the **median**.
- (2) The **spread** of the data using the IQR (and range to a lesser extent).

The higher the median value the higher the average is. The lower the median the lower the average is.

The smaller the IQR the more consistent the observations are, the wider the IQR the less consistent they are. Small box = consistent, Large box = less consistent.


When comparing box plots you must compare them **in context**. You cannot simply say "The median is higher" you need to use this in context. Talk about scores, heights, minutes etc.

X1 8 10 12 14 16 18 20 22

Answer: You need to give at least two comparisons in context. Focus on the median to begin with. X1 have a higher Median than Y1. A statement could be "On average the students in X1 were more successful in the test than in Y1 as their median score was higher by 1 mark". For the second comparison you should look at the spread of data using the IQR. A statement could be "The students in Y1 were more consistent than X1 in terms of their score as the IQR was 4 vs 7" You could also make reference to the highest and lowest scores, the range, 25% and 75% of the data but the median and IQR are the main choices.

Example: Draw a histogram using the previous table. **Answer:** You need to add two columns and find the frequency density.

<u> </u>			
Height	Frequency	Class	Frequency
	(F)	Width	Density
		(CW)	(FD)
$0 < h \le 10$	8	5	$8 \div 5 = 1.6$
$10 < h \le 30$	6	20	$6 \div 20 = 0.3$
$30 < h \le 45$	15	15	$15 \div 15 = 1$
$45 < h \le 70$	5	25	$5 \div 25 = 0.2$

Frequency density always goes on the vertical axis and the classes on the horizontal axis.

Drawing Histograms

Histograms look similar to bar charts. The 3 main differences between them are (1) The **area** of the bar is **proportional** to the frequency of that class. (2) The grouped continuous data is in classes of unequal widths. (3) Histograms show **frequency density** and not frequency on the vertical axis.

To draw a histogram You need the frequency density. Frequency Density is calculated by dividing the **frequency** by the **class width** (size or interval).

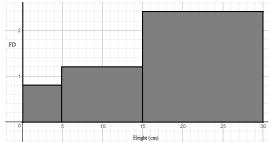
You can say $FD = \frac{F}{CW}$.

(The classes (height) below have widths of 10,20,15 and 25)

Histograms are drawn from continuous grouped data like the following table.

Height(cm)	Frequency
$0 < h \le 10$	8
$10 < h \le 30$	6
$30 < h \le 45$	15
$45 < h \le 70$	5

In the example to the right, we will draw a histogram for the data above. When drawing the histogram, make sure frequency density (NOT FREQUENCY) goes on the vertical axis and the height (or any continuous measure) goes on the horizontal axis. Make sure you use a good scale for the histogram and draw them accurately. The bars **must** be proportional to the frequency.


You may be asked to interpret a histogram instead of drawing one. You may be *Interpreting* asked to find out information about the frequency or the class widths from a Histograms histogram that has been drawn. You can simply rearrange the formula given in the previous section to find either the frequency or the class width. **Class Width Frequency Density Frequency** $FD \times CW = F$ $CW = \frac{F}{}$ FD =FDTo find the frequency you will either:

Remember, the area of the bar is proportional to the frequency of the interval.

- (1) Count squares
- (2) Multiply the frequency density by the class width.

Check that the scale factor is 1:1. With more challenging questions there may be a scale factor enlargement on the area of k.

Example: The histogram below shows information about the heights of a number of plants. Given that there were 4 plants less than 5cm tall, find the number of plants that were more than 5cm tall.

Answer: Here the FD = 0.8 for the interval $0 < h \le 5$. Using $FD \times CW = F$ you get $0.8 \times 5 = 4$. This means there is no scale factor to deal with. To find the number of plants for $5 < h \le 15$ you calculate $1.2 \times 10 = 12$ and for $15 < h \le 30$ you calculate $2.4 \times 15 = 36$. This gives a total of 12 + 36 = 48

Probability

	= = = 0.0 00.0 ====0 J	
Simple Probability	The number of things you want to happen divided by the number of things that	Probability of rolling a 4 on a fair 6 sided die is 1/6
(Theoretical)	could happen . 1 head on a fair coin, 2 sides so the probability of head = $\frac{1}{2}$	There is one 4 and 6 different numbers.
<u>Listing Outcomes</u>	Listing outcomes systematically makes working with probability easier. You	Example: Bob picks two items from Coke, Sweets,
Systematically and	can often just use thee the first letter of each word. Think 'combinations' here.	Burger and Ice Cream. List the possible combinations:
Sample Spaces	Sample spaces show all the possible outcomes of 2 events.	Answer: CS, CB, CI, SB, SI, BI
Basic Notation	P(A) just means 'the probability of A happening'	Example: There are 8 balls in a bag. 5 are Green and
	P(A') means 'the probability of A not happening'. This is called the compliment	the rest are Red. Find: (a) $P(Green)$ (b) $P(Green)$ (c)
	of A and it can be read as A dashed.	<i>P(Red)</i> . Answer: (a) 5/8 (b) 3/8 (c) 3/8
Mutually Exclusive	If two events are mutually exclusive they cannot happen at the same time.	Example: Bob either catches the bus or the train to
Events and the OR	For mutually exclusive events $P(A \text{ or } B) = P(A) + P(B)$ (The OR Rule). You	work. The probability of him catching the bus is 0.4.
Rule for Addition	just add the two probabilities. It looks confusing but it's easy!	Find the probability that he doesn't catch the bus.
	The probability of something not happening is "1 minus the probability of it	Answer: 1 - 0.4 = 0.6
	happening" or more technically $P(A') = 1 - P(A)$	The probability of picking and card that is red and a
	The probabilities of all possible outcomes in an event will always add to 1.	spade from a pack of cards are mutually exclusive.
Relative Frequency	This is how many times something happens ÷ by the number of trials that took	Example: The probability a football team wins a game
and Expected	place in the experiment. To find the number of expected outcomes just \times the	is 0.2. How many games would you expect them to win
Outcomes	probability by the number of trials. This is different to theoretical probability.	out of 40? Answer: $0.2 \times 40 = 8$, so about 8 games.

Page 31 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Frequency Trees	These show how many times two or more	events happen. NOT a tree diagram!	Outcomes on branches, frequ	ency at the end of branch!	
Tree Diagrams for	Use a tree diagram to help work out the pr	**	Pi	ick 2 B	
Probability		branches must sum to 1 when you add downwards $(0.2 + 0.8 = 1)$ as			
	shown in the example to the right). If yo	· ·	0.2 B		
(For video see	probability check that your probabilities of		, p		
Independent Events	changes. An example could be sweets in a		0.8	0.2	
and Conditional	a bag of sweets on the first pick and you c		G		
Probability)	mints left out of 9 sweets. The probabilities	•		0.8 G	
Independent Events	If two or more events are said to be indepe	endent, the outcome of a previous	Independent could be replaci	ing a counter in a bag after	
and <i>Conditional</i>	event doesn't influence the probability of	the next. The question may tell you	picking it. Conditional would	d be where the counter	
Probability.	that the events are independent. Anything	'without replacement' is conditional.	wasn't replaced.		
The AND and OR	OR means you need to Add the probabilit		Using the Tree Diagram above	ve:	
Rule in Probability	Be careful with the wording. Two chocola	ites for example is chocolate AND	$P(B \text{ and } B) = 0.2 \times 0.2 = 0.04$	$P(1 \text{ of each}) = (0.2 \times 0.8)$	
(See previous videos	chocolate. Two mints or Two Toffee mear	ns you would have to add once you	$P(G \text{ and } G) = 0.8 \times 0.8 = 0.64$	` ′	
for tutorial).	have multiplied! Check to see if the prob	olem is independent or conditional!		$+(0.2\times0.8)=0.32$	
Set Notation	A represents the Set A and its elements. A	set is just a collection of items	Set A are the even numbers less than 10:		
	A (A dashed) means the elements not in S	Set A (the compliment or NOT A)	$A = \{2,4,6,8\}$		
	∈ means 'is an element of a set'. (This is		Set B are the prime numbers less than 10:		
	{ } Shows the items (or numbers) in the se	et.	$B = \{2,3,5,7\}$		
	ξ Universal Set (All values being consider				
	$A \cup B$ (The Union) is A or B or both.	red (even if they are not in 71 of 2))	$4 \in A$ simply means 4 is in S		
	$A \cap B$ (The Intersection) is both A and B		$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$ The	ese are in either or both!	
	$A \cap B$ (The intersection) is both A and B $A \cap B \mid B$ is both A and B given it's already	y in R	$A \cap B = \{2\}$ This is the single	e value in both sets!	
Vana Diagnama			AUB AOB	4'0 R	
Venn Diagrams	You can use Venn diagrams to represent s		A B A	B A B	
(Shading) 2 and 3	You may be asked to shade Venn Diagran	ns as snown below and to the right.)) (())	
circles.	$A \hookrightarrow B$ ζ	$A \longrightarrow B \zeta$			
			$(A \cap B)'$ $(A \cup B)$	$A \cup B'$	
	The Union 'A or B or Both'	The Intersection 'A and B'			
Venn Diagrams	Finding the Outside Value	Finding the Intersection Value	40 People Go to a Party.	50 People Go to a Party.	
(Problem Solving)	` '	1) Put the 'neither' value outside	28 take Coke, 19 take	34 take Coke, 19 take	
	` '	(2) Take the number of 'neither' from	Fanta & 10 take both .	Fanta & 10 take neither	
	(2) Find what's left over for the two	he total number of items.	How many take neither ?	How many take both ?	
	'only' parts and fill those in ((3) Add the 2 'Coke' and 'Fanta'	Coke Fanta	Coke Fanta	
	individually. v	values together.	18 (10) 9	16 (18) 7)	
	(3) What's left over goes on the	(4) Subtract the added amount to get	3	9	
	outside to give the 'neither' value.	now many go in the 'both'	The answer is 3	The answer is 9	

Page 32 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Geometry and Measures

	Geometry and Measures	
Area of Rectangle	The area is the space inside a shape. Multiply the two side lengths.	Example: Find the area of a rectangle with side lengths
	$Area = Length \times Width$	3cm and 5cm.
	Width $Perimeter = 2(Length + Width)$	Answer: $A = 3 \times 5$ which gives $15cm^2$. Remember the
	Length	units for area are always something 'squared'
Perimeter of a	The perimeter is the distance around the outside. Add each side length! Some	Example: Find the perimeter of the rectangle above.
Rectangle	rectangles only show two lengths, make sure you are adding all four sides!	Answer: $P = 3+3+5+5$ which gives $16cm$. Not $16cm^2$
Area of	Treat these like a rectangle. Base × Perpendicular Height. Not the slant height!	Example: Find the area of a parallelogram below.
<u>Parallelogram</u>	It will be the same for a rhombus. A rhombus has 4 sides of equal length.	
	h Area = base × height	3cm
	$\int n Area = base \times neight$	
	<u></u>	Answer: $Area = 5 \times 3 = 15cm^2$ (Again units are squared)
Area of a Triangle	Multiply the base by the height and half your answer. Please half the answer!	Example: Find the area of a triangle with a base of 5cm
	hasey height	and a height of 4cm.
	$h \mathbf{OR} h$ $Area = \frac{base \times height}{2}$	Answer: $Area = \frac{4 \times 5}{2}$ which gives $10cm^2$
	$\frac{2}{b}$:	2 which gives idem
Area of a Triangle	To find the area of a triangle where the base and perpendicular height is given	Example: Find the area of the triangle below:
$(U_{i}, \frac{1}{2} + h_{i}, C))$	you can use the method above.	85 9,6
$(Using \frac{1}{2}ab\sin(C))$	If it's not possible to do this use the formula below.	7.8/
	C	
	$a / C \qquad b \qquad Area = \frac{1}{2}ab\sin(C)$	Answer: $a = 7.8$, $b = 9.6$ and $C = 85^{\circ}$.
	$\frac{B}{c}$	Using the formula: $Area = \frac{1}{2}(7.8)(9.6)\sin(85^\circ)$ which
		gives $Area = 44.8u^2$ correct to 1 decimal place.
Area of a Kite	Use the same method as you do for a triangle. Height × Width and half answer.	Example: Find the area of the kite below.
	The area is half that of a rectangle with the same dimensions.	<u>8mm</u> .
	The area is that that of a rectangle with the same difficulties. $\frac{h}{w} = \frac{h \times w}{2}$	3mm
	$h \times w$	
	$W = \frac{1}{2}$	Answer: $Area = \frac{8 \times 3}{2} = 12mm^2$
		Answer: Area = $\frac{12mm}{2}$
Area of a Trapezium	Add the two parallel sides , multiply it by the height and half your answer. If	Example: Find the area of the parallelogram below.
	you can't remember this split it up into rectangles and triangles if you can.	3 3+5
	$a \rightarrow a \rightarrow b$	$A = \frac{3 \cdot 3}{2} \times 4$
	h $A = \frac{3 \cdot 3}{2} \times h$	1 2 **
	<u>✓</u>	Answer: + top & bottom, \times by 4 and half it to give $16u^2$
	I ~	

Page 33 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Area/Perimeter of Compound /Composite Shapes	Simply split the shape into smaller shapes where there area or perimeter is easier to work out. Look out for missing lengths. You may need to find them! There are a number of different ways you can split most composite/compound shapes up. Use whichever method is easiest. Loads of possible splits on them!	Example: Find the area & perimeter of the shape below Area: Split it up into 2. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Circle Parts	Diameter: A line through the centre from circumference to circumference Radius: A line from centre to circumference. (Half the length of a diameter) Centre: The middle of the circle. This will be shown with an O and/or a dot. Tangent: A line that touches the circumference. (Doesn't go through circle) Chord: A line like a diameter but it doesn't go through the centre. Arc (Major or Minor): A small part of the circumference. Sector (Major or Minor): A part of the area of the circle (enclosed by 2 radii) Segment (Major or Minor): Area trapped between chord and circumference.	Circumference Radius Centre Sector Diameter Chord Segment Tangent
Area and Circumference of a Circle	Area = πr^2 which just means pi × radius × radius Area = Space inside. Just multiply the radius by the radius by π . The units will be something 'squared'. Circumference = πd which is just pi × the diameter. Circumference = Distance around the outside. The units are NOT squared	Example: Find the area and circumference of a circle with a radius of $5cm$. Answer: If the radius was $5cm$ then $A = \pi \times 5^2 = 78.5cm^2$ If the radius was $5cm$ then $C = \pi \times 10 = 31.4cm$ If you don't have π on your calculator use 3.14 .
Arc Length and Area of a Sector	The arc is just part of the circumference . The sector is part of the area . Take the angle given as a fraction of 360° & × formulae shown above for each. Example Arc Length = $\frac{\theta}{360} \times 2\pi r$	Example: Find (a) The minor arc length AB and (b) The area of the sector OAB from the diagram to the right. Answer: (a) Arc $AB = \frac{115}{360} \times \pi \times 8 = 8.03cm$ (b) Sector Area: $OAB = \frac{115}{360} \times \pi \times 16 = 16.1cm^2$
Volume of a Cuboid (Capacity)	The volume is the amount of space inside a 3D shape. To find the volume (or capacity) you simply multiply the area of cross section by the length . You can choose any cross section on a cuboid. You <i>could</i> also just multiply each length! The units will be something cubed such as cm ³ ,m ³ ,km ³ $a = \frac{1}{b} \sum_{c} V = a \times b \times c$	Example: Find the volume of the cuboid below. $2cm $

Page 34 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

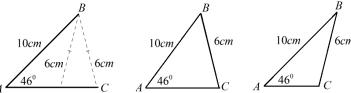
Surface Area of a	The surface area is the area of the outside of a 3D shape. Find the area of each	Example: Find the surface area of the cuboid below.
Cuboid	face and add them up. Check if it is open or closed top. If it's open it will only	
	have 5 faces. Think about a dice. You can touch all six faces. The total surface	2cm
	area would just be 6 times the area of each face. Units is always 'squared'	5cm 7cm
		$A = 2(2 \times 5) + 2(2 \times 7) + 2(5 \times 7)$
	$a = (2 \times a \times b) + (2 \times a \times c) + (2 \times b \times c)$	Answer: $A = 118cm^2$
Sketching the Net of	Just think what the box/cube/prism would look like if you unfolded it. Don't	3cm
a Cuboid (and other	forget the lid if it has one. Dimensions must be accurate and have a label.	2cm 2cm
3D Shapes)	The example shown to the right is a net of a $2 \text{cm} \times 2 \text{cm} \times 3 \text{cm}$ closed cuboid.	2cm 2cm
	An open topped cube will have 5 faces, a closed top will have 6. There are	2cm 2cm 3cm 2cm
	different possible ways of drawing nets. You don't need to draw any flaps!	3cm Cuboid
Volume of a Prism	This is the same as the cuboid when finding the volume. Area of the cross	Example 1: Find the volume of the prism below.
Surface Area of a	section × length . Be very careful with triangular prisms. Make sure you half your answer when finding the area of the cross section. For cylinders you will	
Triangular Prism	need the area of a circle. If you are already given the area simply multiply that	
Thungarar Trisin	by the length. Answer will be in something cubed such as cm ³	3cm
		2cm $4cm$
	$V = Area \times Length$	Answer: The area of the cross section is $3cm^2$
	Area of Cross Section	(Remember to half it!)
	Length	The volume will just be $3 \times 4 = 12cm^3$
Volume of a	A cylinder is a prism. You would use the method shown above. The cross	Example: Find the volume of the cylinder below:
Cylinder	section is simply a circle. Find the area of that circle using $A = \pi r^2$ and	
	multiply the answer by the height of the cylinder. The formula is $V = \pi r^2 h$.	
Surface Area of a		
<u>Cylinder</u>		$\frac{1}{2}$
	$h \mid V = \pi r^2 h$	Answer: $V = \pi \times 2^2 \times 5$
		which can be written as $V = 20\pi u^3$ or $62.8u^3$
Volume of a Cone	A cone is not a prism as it doesn't have a constant cross section. The formula	Example: Find the volume of the cone below.
	used is $V = \frac{1}{3}\pi r^2 h$. Just find the volume of a cylinder and divide by 3.	
	A cylinder is just $V = \pi r^2 h$ which is the area of a circle × the height. (A prism!)	8m /
	$V = \frac{1}{3}\pi r^2 h$	6m
		Angway $V = \frac{1}{2} \pi \sqrt{6^2} \sqrt{9}$ which gives $0.6 \pi m^3 \approx 201.6 m^3$
		Answer: $V = \frac{1}{3}\pi \times 6^2 \times 8$ which gives $96\pi m^3$ or $301.6m^3$

Page 35 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Surface Area of a	The curved surface of a cone is given as $A = \pi l r$ where r is the radius and l is	Example: Find the curved surface area of the cone
Cone	the slant height. This doesn't include the area of the base. You may need to use	below:
	Pythagoras to find the slant height if you are given the perpendicular height.	//
	//	5m //
	If you have a solid cone and need the base too	
	and need the base too	
	circle to your answer!	3m
		Answer: $A = \pi \times 5 \times 3$ which gives $15\pi m^2$ or $48.1m^2$
Volume of a	This is similar to the volume of a cone. Again a pyramid is not a prism as there	Example: Find the volume of the pyramid below.
Pyramid	is no constant cross section. Just find the area of the base, multiply by the	
	haight & hy 2 on if you like V 1 hb. This yearly for this popular has a local	
	height & \div by 3 or if you like: $V = \frac{1}{3}bh$. This works for triangular based too!	7cm
	\wedge	
		6cm 6cm
	$Volume = \frac{1}{3}(a \times b \times h)$	Answer: $V = \frac{1}{2} \times 6 \times 6 \times 7$ which gives $21\pi cm^3$
	a b	3
<u>Frustums</u>	A frustum is either a cone or a pyramid with the top removed. To find the	Example: Find the volume of the frustum below.
	volume simply find the volume of the original large cone or pyramid and then	↑ ↑ ↑ _{12cm}
	take away the volume of the smaller cone/pyramid you removed from the top. (1) Check you have the radius and perpendicular height. If you have the slant	/ \ _{24cm}
	height you will need Pythagoras Theorem or trigonometry.	5cm
	(2) You may need to use similar triangles to find a missing radius or height.	10cm +
	↑ ↑ ↑ Frustum	
	h_2	Volume = ?
	$h_1 \longrightarrow \mathbb{R}^2$	Answer: $V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12) = 700\pi cm^3$
		(This is just the volume of the large cone – small cone)
		N.B You could also find the surface area if required!
Volume of - Cul-	Total Volume - Smaller Cone Volume = Volume of Frustum	•
Volume of a Sphere	A sphere is just a perfect ball! If the sphere has radius r the volume is given as	Example 1: Find the volume of a sphere with diameter 10cm.
	$V = \frac{4}{2}\pi r^3$. Just substitute the values in. Your answer will be in units cubed.	
	Look out for hamisphares. This is just half a sphere so half your answer.	Answer: Radius = 5cm. $\therefore V = \frac{4}{3} \times \pi \times 5^3 = \frac{500\pi}{3} cm^3$
	Look out for hemispheres. This is just half a sphere so half your answer.	Example 2: Find the volume of a hemisphere with
		radius 4mm.
	$V = \frac{4}{3}\pi r^3$ $V = \frac{2}{3}\pi r^3$	
		Answer: $V = \frac{2}{3} \times \pi \times 4^3 = \frac{128\pi}{3} mm^3$
	Hemisphere	(You could just find the sphere and half your answer)
	Sphere	, J J J J J J J J J J

Page 36 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Surface Area of a		Example 1. Find the surface area of a sphere with
Surface Area of a Sphere	The surface area of a sphere is given as $A = 4\pi r^2$. It's the area of the outside!	Example 1: Find the surface area of a sphere with radius 3cm.
	Just square the radius and multiply it by 4π . Look out for hemispheres. These	Answer: $A = 4\pi(3)^2 = 36\pi cm^2$ (Remember cm^2 for area)
	will need the surface area $(A = 2\pi r^2) + a$ possible additional circle on the top.	
		Example 2: Find the surface area of a solid hemisphere with radius 6m.
	$A = 4\pi r^2 \qquad \qquad r \qquad A = 2\pi r^2 + \pi r^2$	Answer: $A = 2\pi(6)^2 + \pi(6)^2 = 3\pi(6)^2 = 108\pi m^2$
	Hemisphere	(On this example you could have just used $A = 3\pi r^2$)
3D Shapes Solids	Faces=Flat Surfaces Edges=Where Faces Meet Vertices=Where Edges Meet	A Cube has 6 faces, 8 vertices and 12 edges
Congruent Shapes	Congruent shapes are identical. They are the same shape and the same size.	Example: The 2 shapes marked × are congruent.
Congruent Snapes	Some shapes will be rotated or reflected (their orientation changed) but still	Example: The 2 shapes marked × are congruent.
	congruent to another shape shown. All of the triangles below are congruent!	
	congruent to another shape shown 7 in or the triangles below the congruent.	X X
		x
Similar Shapes	Same shape, different size. The proportion is the same for each side length.	Example: Below the shapes: x = similar y = congruent
	Check each side length is a multiple of the other shape. Adding or subtracting a	
	fixed value to each side length doesn't keep the proportion. Think scale factors	y x
		X
		У
Problem Solving	To find a missing length look at the corresponding side lengths and then take	Example: Find the value of <i>x</i> in the diagram below.
with Similar	one of two approaches. (The first approach is less ideal for harder examples):	D A
Shapes/Similar	2cm 3cm	E $AB = 5cm$
Triangles	4.5cm	BC = 2cm
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CD = xcm
		A B C
		Answer: Split the triangles and use similarity.
	Method 1 : The larger shape has side length 3 and the smaller side shape has	$\frac{x}{7} = \frac{3}{5} \text{ which gives}$
	side length of 2. Remember, these sides are in proportion as they are similar	$\begin{bmatrix} E \\ A \end{bmatrix}$ $\begin{bmatrix} 7 \\ 5 \end{bmatrix}$ which gives
	shapes . This gives a scale factor of $3/2$ or 1.5. To find x , multiply 4.5 by 1.5 as the sides are proportional. $x = 6.75$ cm.	$x = \frac{7 \times 3}{3 \times 3}$ and
	Method 2 : Set up an equation and look at the sides in proportion:	$x = {5}$ and
	$\begin{array}{c} x + 4.5 \\ \end{array}$	A = 5cm = B $A = 7cm = C$ simplifies to $x = 4.2$
	$\frac{x}{3} = \frac{4.5}{2}$ Multiply both sides by 3 to give $x = \frac{3 \times 4.5}{2}$ which gives $x = 6.75$ cm.	
		(One way of doing it!!)


Page 37 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Congruent Triangles

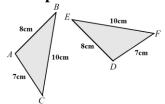
There are 4 ways you can prove that two triangles are congruent (identical).

SSS (Side/Side/Side)	RHS (Right Angle/ Hypotenuse/ Side)	SAS (Side/Angle/Side)	ASA (Angle/Side/Angle)
All sides are of	The hypotenuse	Two side lengths	Two angles are
equal length for	and one side	are the same	the same size and
both triangles.	length are the	AND the	a corresponding
	same for both	enclosed angle	side for both
	RA triangles.	for both triangles	triangles.

There is one combination that **doesn't** prove congruency. "Don't be an ASS". Angle Side Side is not sufficient (unless it's RHS!) to prove congruency as shown below. Triangle *ABC* can be drawn 2 different ways despite having two equal sides and one equal angle.

You will often have to construct an argument using one of the 4 choices above being clear in your work. Some examples are shown to the right. Each makes references to the equal sides or angles and has a conclusion that includes either SSS, RHS, SAS or ASA.

The 4 possible scenarios are shown to the right.


Similar Solids

If two solids are mathematically similar they are the same <u>shape</u> **but** different <u>sizes</u>. Their proportion remains. The easiest thing to do is find either the linear, area or volume scale factor that connects the solids and put them in a table. Let's start with an easy example. Let's say Cuboid A and Cuboid B are mathematically similar. Cuboid A is twice the length of Cuboid B. Setting up a table you get:

Linear Scale Factor	2
Area Scale Factor	$2^2 = 4$
Volume Scale Factor	$2^3 = 8$

This means that the area of Cuboid A will be 4 times the area of Cuboid B and the volume of Cuboid A will be 8 times the volume of Cuboid B. If you are given the area scale factor, square root it to get the linear scale factor. If you are given the volume scale factor, cube root it to get the linear.

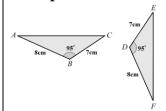
Example 1:

AB = DE AC = DFBC = EF

.. The two triangles are congruent by SSS.

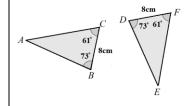
Example 2:

C Scm F 10cm

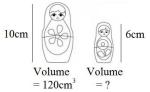

 $\angle ABC = \angle EDF = 90^{\circ}$

AC = EF

AB = DF


... The two triangles are congruent by RHS

Example 3:


AB = DF BC = DE∠ $ABC = \angle EDF$ ∴ The two triangles are congruent by SAS.

Example 4:

BC = DF∠ $ABC = \angle EDF$ ∠ $ACB = \angle EFD$ ∴ The two triangles are congruent by AAS.

Example 1: Two mathematically similar dolls are shown below. Find the volume of the smaller doll.

Linear Scale Factor	6/10 = 0.6
Area Scale Factor	0.6^{2}
Volume Scale Factor	0.6^{3}

All you need to do now is multiply the volume of the larger doll by the volume scale factor to find the volume of the smaller doll. This gives $120 \times 0.6^3 = 25.92cm^3$.

Metric Enlargements	$mm \rightarrow cm$	÷10	$mm^2 \rightarrow cm^2$	$\div 10^2 = 100$	$mm^3 \rightarrow cm^3$	$\div 10^3 = 1000$	Example : Co	onvert 300ar	m^3 into m^3	
THE EMILISTIC	$mm \leftarrow cm$	×10	$mm^2 \leftarrow cm^2$	$\times 10^{2}$	$mm^3 \leftarrow cm^3$	$\times 10^3$	Answer: 300			
	$cm \rightarrow m$	÷100	$cm^2 \rightarrow m^2$	$\div 100^2$	$cm^3 \rightarrow m^3$	$\div 100^{3}$			nsions of a recto	angle (for
	$cm \leftarrow m$	×100	$cm^2 \leftarrow m^2$	$\times 100^{2}$	$cm^3 \leftarrow m^3$	$\times 100^{3}$				a in m² you may
	$mm \rightarrow m$	÷1000	$mm^2 \rightarrow m^2$	$\div 1000^2$	$mm^3 \rightarrow m^3$	$\div 1000^{3}$	* '		rt rather than a	
	$mm \leftarrow m$	×1000	$mm^2 \leftarrow m^2$	$\times 1000^{2}$	$mm^3 \leftarrow m^3$	$\times 1000^{3}$	answer will b	e the same.		
Angle Types	Acute angles	s are less that					1			
	Right angles	are exactly	90°, (Often sh	own by a sma	all square on	no value)			\	
		_	r than 90° but							
	_	_	than 180° and			•		D: 1		, n a
			a reflex angle	•		id acute one	Acute	Right	Obtuse	Reflex
Basic Angle Facts			angle round to ne add to 180			(gum to')				
Dasic Aligie Facts	_	_	t add to 360°.	. (Tills illay	be written as	s sum to)			_	d
	_		These have a	little square	and often no	numbers on!				c a
			algebra to sol	_			<u>x/y</u>	<u> </u>		b
	An example	might be a li	ne with and ar	gle of $2x$ and	an angle of 3	x. Just add				
	them and sol	ve: $2x + 3x =$	$= 180^{\circ} \text{ so } 5x =$	180° and $x =$	= 36 ⁰		x + y = 1	180°	a+b-	$+c+d = 360^{\circ}$
Opposite Angles			I. Remember a						$\frac{1}{x}$	
			ound a point a	dd to 360°. T	his will help	you with			$\frac{x}{v/x}$	
Alternate Angles	Some multi-s		l. These look l	ika a lattar 7	$v - v \ell v = v$	v of coursel			/	
Atternate Angles	_	_	angles' in an						v/x	
			o state with a r					/	/	
	-		ore than one w		_	-		x/y	<u>v</u> .	
Corresponding	Correspondit	ng angles are	equal. These	look like the	letter F	_			v /	
Angles			angles' in an			responding)			\xrightarrow{x}	
			o state with a i							
	answer. Ther	e is often mo	ore than one w	ay to explain	how you four	nd the angle.		<i>y</i> /	/	
		•	vo angles as co			_		$\frac{1}{x}$		
G :			as you show h	<u> </u>				/		
Co-interior Angles		_	180°. $x + y = 1$						$\frac{1}{x}$	
			angles' in an					,	/	
	-		o state with a r		_	-		/		
		=	er makes sens	=	-			x / y	,	
	unless they =	90°. Studen	ts often incom	ectly just say	opposite an	gies'.		/		

Page 39 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Bearings	Bearings are just angles! Here are the rules you must use with bearings: (1) Measure from North (Draw a north line at each point to help you) (2) Measure clockwise (Using a protractor or by using angle facts) (3) Your answer must have 3 digits (An angle of 40° has a bearing of 040°) The first diagram shows the bearing of 3 water vehicles from a harbour. The second diagram shows how to find the bearing of one place from another. B from A is measured at A and A from B is measured at B (Use north lines) Just fill out all missing angles. Sometimes you can use angle facts above instead of measuring the angle. Co-interior angles add to 180° as shown above.	Boat 250° Ship 130° Raft 050° Raft A The bearing of B from A Ship
Exterior Angles of a Regular Polygon	For regular polygons divide 360° by the number of sides. This will give you the size of each exterior angle. This is shown on the straight line to the right. d The regular hexagon shown has an exterior angle of 60° As $360^{\circ} \div 6 = 60^{\circ}$ The interior angles of 120° are also shown. This was found by subtracting the exterior angle from 180° as angles on a straight line add to 180° If you are unsure, interior is inside and exterior is outside !	120°
Interior Angles of Regular Polygon	To find an interior angle subtract the exterior angle from 180° as shown above. Add all the angles for the sum. The number of angles = number of sides.	Use the diagram above to help you! You could also use $(n-2)\times180$ to find the sum of the interior angles.
Circle Theorem 1 (Angles in a semi- circle)	Angles in a semicircle have a 90° angle at the circumference. Make sure the diameter does pass through the centre (this may have an <i>O</i> on). You may be asked questions involving Pythagoras in examples involving semi circles.	Example: Find the value of x and y in the circle below. Answer: Angles in a semicircle $\therefore y = 90^{\circ}$. Angles in a triangle add to 180° $\therefore x = 52^{\circ}$
Circle Theorem (Angles in a Quadrilateral)	The opposite angles in a cyclic quadrilateral sum (add) to 180° . Make sure each vertex of the quadrilateral touches the circle. $a + c = 180^{\circ}$ $b + d = 180^{\circ}$	Example: Find the value of x and y in the circle below. Answer: Opposite angles add to 180° $\therefore x = 97^{\circ}$ $y = 88^{\circ}$.
Circle Theorem (The Arrow)	The angle at the centre is double that at the circumference. Look for an O .	Example: Find the value of x in the circle below. Answer: x is half of 104° at the centre $\therefore x = 52^{\circ}$

Page 40 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Cinala Thaanam	The angles at the top of the how are the same. The angles at the bettem of the	Example: Find the value of word win the similar helevy
Circle Theorem (The Bow/Angles in	The angles at the top of the bow are the same. The angles at the bottom of the bow are the same. You don't need the lines to go through the centre.	Example: Find the value of x and y in the circle below.
the Same Segment)	bow are the same. For don't need the fines to go through the centre.	
ine same segment)		
		$\left(\frac{1}{x} \right)^{-31}$
		42°/
	\b/\	A II-in - 4h - h 21° 1 42°
C: 1 TI		Answer: Using the bow, $y = 31^{\circ}$ and $x = 42^{\circ}$
<u>Circle Theorem</u>	When a tangent meets a radius it meets at right angles. You can say the angle	Example: Find the value of x and y in the circle below.
(Tangent)	between the radius and the tangent is 90° or that they are perpendicular.	4cm
		3cm ≠ vsm
	When two tangents are drawn from a point to the circle their lengths are equal.	Angreen 00° and using Dythogones Theorem 5
C: 1 TI		Answer: $x = 90^{\circ}$ and using Pythagoras Theorem. $y = 5$
Circle Theorem	The angle <i>a</i> between the tangent and the chord is the same size as the angle	Example: Find the value of x and y in the circle below.
(The Alternate Segment Theorem)	a in the alternate segment. This is true for b and b too.	
<u>Segment Theorem)</u>	One way to spot these is to look for the two angles 'opening to the left' which are <i>b</i> . These will be the same. The two angles opening to the right will both	38'
	have the value of a .	
	have the value of a.	V /52°
		V SE
	(b . /)	Answer: $y = 38^{\circ}$ and $x = 52^{\circ}$ using the alternate
		segment theorem. Look at the way the angles open up if
	a b	you are struggling . x and 52° to the right, y and 38° to
		the left.
All Circle Theorem	Combining theorems to solve multistep problems.	Rotate your paper to help you spot different theorem.
The Equation of a	The tangent to a circle is a straight line that touches the circle and is	Example: Find the equation of the tangent to the circle
Tangent to a Circle	perpendicular (at right angles) to the radius at that given point. To find the	$x^2 + y^2 = 25$ at the point (4,3).
	equation of a tangent to a circle at a given point:	Answer: (1) The centre of the circle is $(0,0)$ and passes
	(i) Find the gradient of the radius using the centre of the circle and the given	through the point (4,3). The gradient of the radius is
	point as your two points. (See the section on gradient previously) (ii) Use the negative reciprocal for the gradient of the tangent (see parallel and	$\frac{3-0}{3} = \frac{3}{3}$.
	perpendicular lines section)	$\frac{1}{4-0} = \frac{1}{4}$.
	(iii) Use the equation of a straight line ($y = mx + c$) with your gradient and the	1
	point you are given in the question. (See the section on $y = mx + c$)	(2) The gradient of the tangent will be $-\frac{4}{3}$ as it's the
	point you are given in the question. (See the section on y - mx + c)	negative reciprocal of the gradient of the radius.
	l .	negative reciprocal of the gradient of the radius.

Page 41 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

		(3) Substituting into $y = mx + c$ with the point (4, 3) and a
	4,3	gradient of $-\frac{4}{3}$ you get: $3 = -\frac{4}{3}(4) + c$ which
	0,0	gives $c = \frac{25}{3}$ and as a result the equation of the tangent is $y = -\frac{4}{3}x + \frac{25}{3}$. A diagram is shown to the left.
Types of Triangles	Right Angle Triangles have one 90° angle in. Look out for the square in these Isosceles have 2 equal sides and 2 equal base angles. Look for notation! Equilateral have 3 equal sides and 3 equal angles (60°) Look for notation! Scalene have different size sides and angles. No notation. You can spot isosceles and equilateral by the small lines on their sides.	Right Angled Isosceles Equilateral Scalene
Parallel and Perpendicular Lines	Parallel lines never meet and have a fixed distance between them. Perpendicular lines are at right angles. There is a 90° angle between them. If two straight lines are parallel the value of m in the equation $y = mx + c$ will be the same for both lines. $y = 3x - 1$ and $y = 3x + 2$ as their gradients are equal.	
Angle and Line	Angle Bisector: Cuts the angle in half.	
Bisectors	Open the compass up. Place the sharp end on the vertex. Mark a point on each line Without changing the compass put the compass on each point and mark a centre point. Get a ruler and draw a line through the vertex and centre point. Line Bisector (Perpendicular Bisector): Cuts the line in half and at right angles Put the sharp end on Point A. Open the compass up past half way on the line. Mark a point above and below the line. Without changing the compass do the same from B. Draw a straight line through the points. You MUST leave your construction marks on all bisection questions!	Line Bisector Angle Bisector
Loci and Regions	A locus is just a path of points or region that follows a rule.	Example: Draw the locus of points no more than 3cm
	For the locus of points closer to <i>B</i> than <i>A</i> you will create a perpendicular bisector as above and shade to the right of the line as shown to the right.	from <i>A</i> and no more than 2cm from <i>B</i> . Answer: Draw a circle with radius 3cm from <i>A</i> and one
	For the locus of points less than or more than a fixed distance from A use a	with radius 2cm from B. Shade inside as it's no more
	compass with the given radius to draw a circle. You may have to combine loci.	than! (If it were more than it would have been outside!)
	A B 2cm A 2cm A Points Closer to B than A Points less than Points more than	A B
	Look out for broken lines on strict inequalities.	

Page 42 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

<u>Translating a Shape</u> (A Transformation)	Translate means to move the shape. There is no change in its size or its orientation. Vectors are used to give information about the 'movement'	(a) $\binom{2}{3}$ is right 2 and up 3 (b) $\binom{-1}{2}$ is left 1 and up 2
	The top number tells you to move right or left. Right is + and left is	
	The bottom number tells you to move up or down. Up is + and down is	$\begin{pmatrix} c \end{pmatrix} \begin{pmatrix} 3 \\ z \end{pmatrix}$ is right 3 and down 5 $\begin{pmatrix} d \end{pmatrix} \begin{pmatrix} 0 \\ z \end{pmatrix}$ is just up 4
	If coordinates are used for the translation just treat them like vectors.	$\begin{pmatrix} c \\ -5 \end{pmatrix}$ is right 3 and down 5 $\begin{pmatrix} d \\ 4 \end{pmatrix}$ is just up 4
Rotating a Shape	The size of the shape doesn't change. The shape is simply turned about a point.	(a) Rotate Shape A 90° clockwise about (0,1)
(Transformation)	You will be given (i) A direction (ii) An angle and (iii) A centre of rotation.	(b) Rotate Shape B 270° anti clockwise about (0,0)
Reflecting a Shape	Think about standing looking in a mirror. Learn lines such as $x = 2$ (vertical),	(a) Reflect Shape A in the x axis.
(Transformation)	y = -1 (horizontal) & $y = x$ (diagonal). Use a mirror if you are unsure.	(b) Reflect Shape A in the line $x = 2$.
Enlarging a Shape	You will be given a Scale Factor and no centre of enlargement. Multiply each	SF of $3 = 3$ times larger (× EACH side length by 3)
(Basic examples)	side length of the shape by the scale factor. A scale factor of 2 is twice as big	SF of $\frac{1}{2}$ = half the size (\div EACH side length by 2)
(Transformation)	$(\times \text{ by } 2)$, not + 2 to each side. See below for centre of enlargement examples.	SF of $1 = \text{no change in the size of the shape}$
Enlargements Given	If the scale factor is positive both shapes will be the same side of the centre of	
a centre of	enlargement. If the SF is negative the two shapes will be either side of the	
Enlargement	centre. Negative enlargements will look like they have been rotated. One way	
(Including Negative	to do this is with guidelines & the other way is to do it with vectors. SF 2 is	
and Fractional)	twice as big & twice as far away from the centre of enlargement.	
		A to B is an enlargement A to B is an elargement SF 2 about the point (2,1) SF -1/2 about the point (7,6)
Finding the centre of	Draw guidelines through each corresponding vertex of the two shapes with a	1 1/7
<u>Enlargement</u>	pencil and ruler. Each line will pass through the centre of enlargement when	
	done accurately as shown to the right.	M.S.
	Be careful with negative enlargements when finding the corresponding corners	As Pisa sharman
G 11.1	as the shape will be a different way round.	SF 2 about the point (2,1)
Combining	Perform 2 transformations and then state the single transformation that maps	To find the resultant vector you can add the 2 vectors
<u>Transformations</u>	thee original shape to the final shape. You may need to use resultant vectors.	you used in the translations given.
Naming	Rotations will be the same size but often a different way around. (orientation)	(Centre, direction and angle required for Rotations)
<u>Transformations</u>	Translations have simply been moved. No change to size or orientation.	(The vector is required for Translations)
(The 4 choices)	Reflections will sometimes have the same orientation depending on the shape.	(The reflection line for Reflections) Look out for $y = x$
	Enlargements will be the same shape but either larger or smaller!	(The scale factor is required for Enlargements)
<u>Line Symmetry</u>	How many mirror lines can you draw on the shape? Regular shapes will have	
	the same number of sides as they do symmetry lines and rotational symmetry.	
	Be careful with patterns within shapes. This will change the symmetry!	
	Parallelograms seem to catch people out too!	
Rotational	How many times does the shape (and pattern if applicable) look the same	\wedge
Symmetry	when you turn it through 360° ? This gives us the order of rotational symmetry.	
	Be careful with patterns. Regular shapes without patterns will have the same	
	number of sides as their rotational symmetry. Use tracing paper if you need.	Orders 5 Orders 2 Orders 2
	A circle without a pattern will have an undefined number!	Order = 5 Order = 2 Order = 3 Order = 1 (Regular) (Regular)

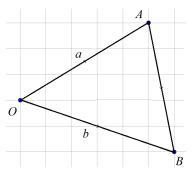
Page 43 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Plans and Elevations	These types of drawing take 3D drawings and produce 3 different 2D drawings. Plan View: From above. Think 'birds eye view' Side Elevation: A 2D shot from the side of the object. Front Elevation: A 2D shot from the side of the object. You will be told which is the front and/or side. Remember to put the units on!	Original 3D Drawings Plan Front Elevation Side Elevation
Metric Units (See Video on	Length : mm, cm, m and km. 1km = 1000m = 100'000cm = 1'000'000mm Mass : mg, g, kg, tonnes 1kg = 1000g	Man's height ~ 1.8-2m, credit card ~ 0.8mm thick Adults weight 70kg, a small cake = 150g
converting units)	Volume : ml, cl, l 1 litre = 1000ml	Glass of coke is about 250ml
Speed, Distance,	Speed = Distance ÷ Time	(a) Speed is 4mph, Time is 2 hours, Find the Distance.
<u>Time</u>	Distance = Speed × Time Time = Distance ÷ Speed Remember the correct units!	$D = S \times T$ so $4 \times 2 = 8$ miles. (b) Time is 5 hours, Distance = 12km, Find the Speed $S = D \div T$ so $12 \div 5 = 2.4$ kph
Distance/Time	Distance/Time graphs show the distance covered and the time taken as shown	4
Graphs	to the right. Distance is on the vertical axis and time is on the horizontal. You can find the speed from the gradient of the line (Distance \div Time). The steeper the line, the quicker the speed. If there is a flat line (horizontal to the time axis) the object is stationary. On the example to the right the speed on the first section is $4 \div 2 = 2 \text{km/h}$, the second 0km/h and the third $4 \div 4 = 1 \text{km/h}$	Distance (Km) 3
Velocity Time Graphs	Velocity/Time Graphs show the speed of an object over a given time. Velocity is on the vertical axis and time is on the horizontal. You can find the acceleration from the gradient of the line (Speed ÷ Time). The steeper the line the quicker the acceleration. If the line goes up it's acceleration, if it goes down it's deceleration and if it's flat then there is no acceleration and a constant speed. The area under the graph is the distance covered. This can be found by either finding the area of the trapezium or adding the areas of rectangles and triangles.	Velocity (m/s) Time (Seconds)
Density, Mass, Volume	Density = Mass ÷ Volume Mass = Density × Volume Volume = Mass ÷ Density Remember the correct units.	(a) Density is $8kg/m^3$, Mass is $2kg$, Find the Volume. $V = M \div D$ so $2 \div 8 = \frac{1}{4} m^3$ (b) Volume is $20cm^3$, Mass is $30g$, Find the Density $D = M \div V$ so $30 \div 20 = 1.5 g/cm^3$
Pressure	Pressure = Force ÷ Area Force = Pressure × Area Area = Force ÷ Pressure (Force is measured in Newtons (N))	(a) Force is 12N, Area = $3m^2$. Find the Pressure $P = F \div A$ so $12 \div 3 = 4N/m^2$ (b) Area = $1.2m^2$, Pressure = $4.8N/m^2$. Find the Force $F = P \times A$ so $1.2 \times 4.8 = 5.76N$

Page 44 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Kinematics	You can use the contant acceletaion equ	· • • • • • • • • • • • • • • • • • • •	Example 1: A car starts from		
(Constant	calculate the motion of an object. This c	_	at $3ms^{-2}$ for 5 seconds. Find t	the velocity of the car after	
Acceleration	The equations used	Where	5 seconds.		
Equations SUVAT)	(1) v = u + at	s = displacement	Answer:		
	(2) $s = ut + \frac{1}{2}at^2$	u = initial velocity	$S \qquad U = 0 \qquad V = 0$		
	$\begin{bmatrix} 2 & 3 - m + 2 & m \\ 2 & 2 & m \end{bmatrix}$	v = final velocity	You need $v = u + at$. Substitu	ite the 3 values in to find	
	(3) $v^2 = u^2 + 2as$	a = acceleration	the 4 th : $v = 0 + 3(5)$. This give	es the answer of $v = 15ms^{-1}$	
		t = time	Example 2: A car travels 15	0m. The initial velocity of	
		th	the car is $8ms^{-1}$ and after 150	- I	
	You will be given 3 pieces of information		Find the acceleration of the o	<u> </u>	
	correct equation. Simply write SUVAT		Answer:		
	(as shown to the right), fill the given val		S = 150 $U = 8$ $V = 1$	12 A = ? T	
	The units used generally speaking are: s		You need $v^2 = u^2 + 2as$. Sub	stitute the 3 values in to	
	The notation ms^{-1} for velocity and ms^{-2} for		find the 4 th : This gives $12^2 = 8^2 + 2a(150)$.		
	Displacement is like distance but has dis		Now solve for a .		
	Velocity is like speed but again has dire				
	Acceleration is the rate of change of vel	*	$a = \frac{12^2 - 8^2}{2(150)}$ which simplifies	s to $a = 0.267 ms^{-2}$	
	vector too! All values but time can be ne	eganive.	` '		
Vectors and Vector	$\begin{pmatrix} a \\ \cdot \end{pmatrix}$ is a column vector. a is right(+) or	left(-) and h is $un(+)$ or $down(-)$	Position & Direction Vectors	Magnitude of a Vector	
Notation, Equal	$\begin{pmatrix} b \end{pmatrix}$ is a column vector. a is right(+) or	icit() and b is up(+) or down()	$\begin{vmatrix} \rightarrow \\ 4B - \end{vmatrix}$ (3) $\begin{vmatrix} AB - \\ BB \end{vmatrix}$ (6)	\rightarrow (3) $+$ $\binom{8}{6}$	
Vectors, Magnitude	(3)			$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $B \begin{pmatrix} 6 \end{pmatrix}$	
of a Vector	could represent a displacement of 3	metres to the right and 4 metres up.	$ \begin{array}{ccc} (2) & \xrightarrow{E} & \xrightarrow{EF} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} $		
	AB = B - A. To find the direction vecto	→ A D simply subtract the position	$\begin{pmatrix} A \\ 5 \end{pmatrix}$	$\binom{A}{5}$ $ AB = \sqrt{(8-5)^2 + (6-4)^2}$	
	AB = B - A. To find the direction vector vector of A from the position vector of	- · · · · - · · · · · · · · · · · · · ·	$(4) \rightarrow (-1)$	$ A = AB = \sqrt{(6-3)^2 + (6-4)^2}$	
	•	b. It's just a fine segment!	D $CD = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$	$ AB = \sqrt{13}$	
	\rightarrow \rightarrow $AB = -BA$ (Vectors have direction and	magnitude)			
	71B = Bit (vectors have direction and	magnitude).			
	The magnitude (length of a vector) \overrightarrow{AB} i				
Vectors (Adding, Subtracting and	You can add $\binom{2}{1} + \binom{5}{4} = \binom{7}{5}$ subtract	$\binom{8}{3}$ - $\binom{2}{1}$ = $\binom{6}{2}$ & × them $2\binom{3}{4}$ = $\binom{6}{8}$	C	Scalar multiples	
Multiplying and	The resultant vector is just a direct vector		→ // / ·	a	
Resultant Vectors)	the rightyou to get to C from A either via		$AC / \uparrow \rightarrow BC$	2a /	
	$ \rightarrow \rightarrow \rightarrow \rightarrow $			-a	
		ele laws as the 3 vectors make a triangle	\rightarrow $\stackrel{B}{\longrightarrow}$		
	You can multiply a vector by a scalar as		A AB		

Page 45 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.


Vectors (Solving Geometric Problems)

You can use vectors to solve problems in geomerty. It's important to remember that vectors have both direction and magnitude (size). You must look at which way the arros on the vectors are pointing!

You can find a 'vector journey' by simply tracing your finger along the given route you want to take. The diagram below shows how to get from each point in the triangle to the others. You can see that travelling from O to A is different from A to O. The magnitude of the vector is the same but the direction is reversed to give the negative value.

We can say
$$\overrightarrow{OA} = a$$
 and $\overrightarrow{AO} = -a$

Look out for the arrows to show the direction of the vector.

$$\overrightarrow{OA} = a \qquad \overrightarrow{AO} = -a$$

$$\overrightarrow{OB} = b \qquad \overrightarrow{BO} = -b$$

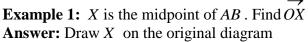
$$\overrightarrow{AB} = AO + OB = -a + b = b - a$$

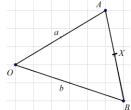
$$\overrightarrow{AB} = BO + OA = -b + a = a - b$$

You may be given midpoints or ratios in questions. Simply set up a vector journey and use the information given. Drawing it out will really help especially as most vectors questions don't include the grid.

The example to the right shows this.

You will need to be able to simplify and factor basic algebraic expressions as they will often highlight parallel vectors.


An example could be $\overrightarrow{AB} = 2p - \frac{1}{2}(4q - 2p)$. This simplifies to give p - 2q


which is parallel to 3(p-2q) for example. This is covered below.

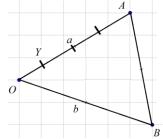
With ratios if you have a ratio of 2:3 then the line is split into 5 parts. So one part is 2/5 of the line and the other 3/5. A ratio of 5:7 has 12 parts so it would be split as 5/12 and 7/12.

<u>Parallel and</u> <u>Collinear Vectors</u>

Parallel vectors will simply be a mutliple of of each other. If you have the vector 2a+b and the vector 4a+2b then you can say these are parallel. $4a+2b \equiv 2(2a+b)$. This means that 4a+2b is in the same direction (or parallel) to 2a+b but twice the length. By factoring, it's easier to see parallel vectors and will help when you construct a proof in a vectors question.

Now build up a journey.

You could use
$$\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB}$$
.

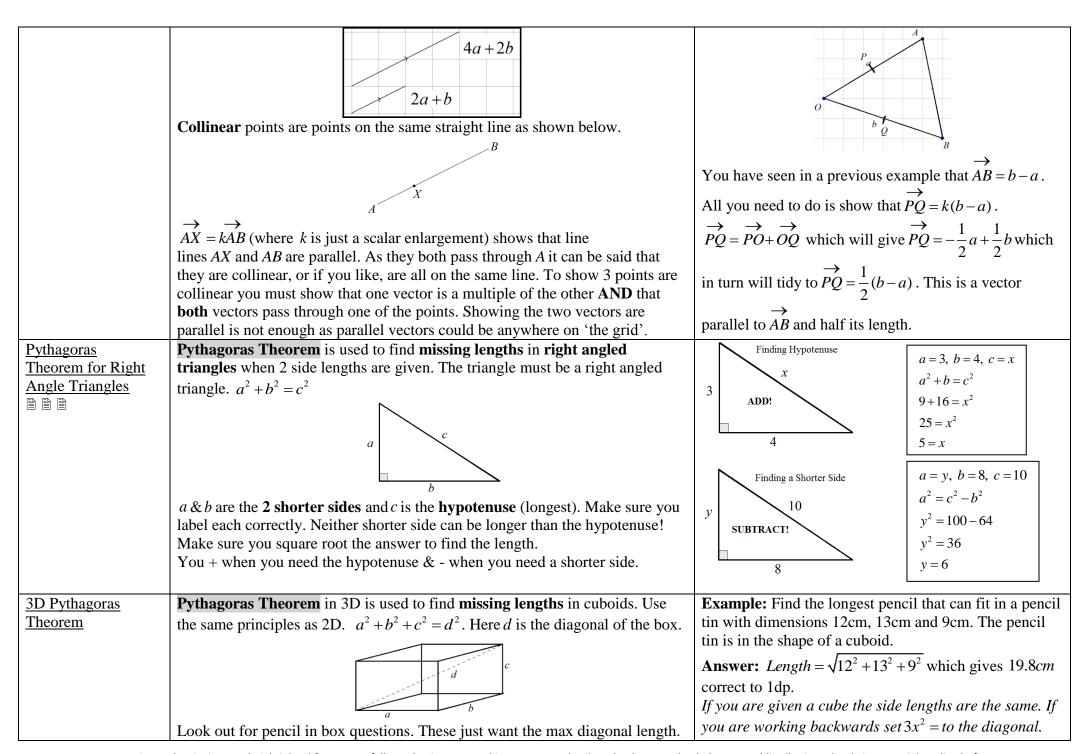

This will give:
$$\overrightarrow{OX} = a + \frac{1}{2}(b-a)$$
.

This will simplify to
$$\frac{1}{2}a + \frac{1}{2}b$$
 or $\frac{1}{2}(a+b)$

Example 2: Y is the point on OA such that the ratio

$$OY: YA \text{ is } 1:3. \text{ Find } \overrightarrow{BY}.$$

Answer: Draw *Y* on the original diagram

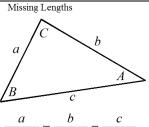


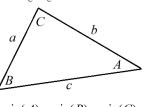
If the ratio is 1:3 split the line into four parts (quarters). and simply build a vector journey.

$$\overrightarrow{BY} = \overrightarrow{BO} + \frac{1}{4} \overrightarrow{OA} \text{ which gives } \overrightarrow{BY} = -b + \frac{1}{4} a.$$

Example: The points P and Q are the midpoints of the lines OA and OB respectively. Show that the lines AB and PQ are parallel.

Answer: Mark the points *P* and *Q* on the diagram.

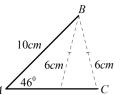

Page 47 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

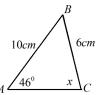

Trigonometric	Trigonometric ratios are used to find missing lengths and angles in right	Example 1: (a) Find the value of x		
Ratios	angled triangles. You would use Pythagoras if you had 2 given sides and need			
	to find the 3rd. The triangle shows each side length relative to the angle θ .	х		
	To find a missing side length you need: Hypotenuse (H) 1 given angle size	35 ^d		
	1 given side length Opposite (O) To find a missing angle you need:	Answer: You want the opposite (length) and you have the adjacent side to the given angle. You use tan here. $x = 11 \times \tan(35^{\circ})$ which gives $x = 7.70cm$		
	2 given side lengths			
	θ			
	You can use the Trig Ratios below to help find missing lengths and angles.	Answer: You want the angle. You have the adjacent side and the hypotenuse. You use cos here.		
	S X H O T X A			
	$sin = \frac{opposite}{hypotenuse} cos = \frac{adjacent}{hypotenuse} tan = \frac{opposite}{adjacent}$			
	Use sin, cos & tan for finding lengths and sin ⁻¹ , cos ⁻¹ & tan ⁻¹ for finding angles. Press 'shift' on your Casio when you need the angle!	s. $\cos(x) = \frac{5}{7}$ which gives $x = \cos^{-1}\left(\frac{5}{7}\right)$ and $x = 44.4^{\circ}$		
Special Values for	You will need to learn the values for special angles in the table below.	You can derive these values using the diagrams below.		
Angles in	0° 30° 45° 60° 90°			
Trigonometry	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\frac{1}{\sqrt{3}} \operatorname{or} \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3}$	Remember: $\sin(x) = \frac{opp}{hyp}$, $\cos(x) = \frac{adj}{hyp} \& \tan(x) = \frac{opp}{adj}$		
Graphs of Trig	There are 3 trigonometric graphs you will need to know:	Symmetric		
Functions (with	$y = \cos(x)$ for $y = \sin(x)$ $y = \tan(x)$ for	00		
basic equations)	$0 \le x \le 360^{\circ}$ for $0 \le x \le 360^{\circ}$ $0 \le x \le 360^{\circ}$	0 50 10 100 200 300 300 300 0 100 200 300		
		$\cos(x) = \cos(360 - x)$ $\tan(x) = \tan(180 + x)$		
	0 100 200 300	You can find values and solve equations using symmetry and cycles. This is covered in the videos.		
	Repeats every 360° Repeats every 360° Repeats every 180°	$\sin(x) = \sin(180 - x)$		
Transforming Trig Graphs	The same rules apply as shown previously for algebraic graphs. The horizonta translations will be in degrees! See the full video to help on algebraic graphs.	Translations Reflections and Stretches.		
<u> </u>				

Page 48 - Licensed to Springwood High School & West Norfolk Acadamies Trust – This copy cannot be shared online or uploaded to any publically viewed website or social media platform.

Sine Rule (Including Ambiguous Case)

Which Rule do I Use?

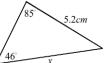



$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \qquad \qquad \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

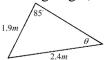
The Sine Rule allows you to find missing lengths and angles in non-right angled triangles. You can use the cosine rule in 2 situations:

- (1) To find a missing length when **2 sides** are given and **1 'non-enclosed'** angle.
- (2) To find a missing angle when **2 angles** are given and **1 side** is given.

Be careful! Look out for the ambiguous case of the sign rule.



A triangle could be formed two different ways when two side lengths are the same and one angle as shown above. Use the sine rule to find the acute angle and then subtract this value from 180° to get the other possible angle.

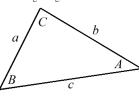

Example 1: (find a missing length): Find the value of x

Answer: Use the formula to give $\frac{x}{\sin(46^\circ)} = \frac{5.2}{\sin(85^\circ)}$

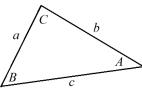
This gives $x = \frac{5.2\sin(46^\circ)}{\sin(85^\circ)}$ which leads to x = 3.75cm

Example 2: (find a missing angle): Find the value of θ .

Answer: The formula to give $\frac{\sin(\theta)}{1} = \frac{\sin(85^\circ)}{24}$ which


can be written as $\sin(\theta) = \frac{1.9 \sin(85^\circ)}{2.4}$.

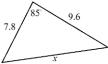
This gives $\theta = \sin^{-1} \left(\frac{1.9 \sin(85^\circ)}{2.4} \right)$ and $\theta = 52.1^\circ$.


Cosine Rule

Which Rule do I Use?

$$a^2 = b^2 + c^2 - 2bc\cos(A$$

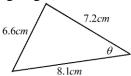
$$a^{2} = b^{2} + c^{2} - 2bc\cos(A)$$
 $\cos(A) = \frac{b^{2} + c^{2} - a^{2}}{2bc}$


The Cosine Rule allows us to find missing lengths and angles in non-right angled triangles. You can use the cosine rule in 2 situations:

- (1) To find a missing length when there is an enclosed angle and 2 given sides.
- (2) To find a missing angle when 3 side lengths are given.

Make sure your calculator is in degrees mode!

Remember that you can still use Pythagoras Theorem and the trig ratios (SOH/CAH/TOA) when you have right angled triangles!


Q1: (finding a missing length): Find the value of x

A: Use the formula on the left to fins a missing length:

$$x = \sqrt{7.8^2 + 9.6^2 - 2(7.8)(9.6)\cos(85^\circ)}$$
 $\therefore x = 11.8$

Q2: (find a missing angle): Find the value of θ .

A: $\theta = \cos^{-1} \left(\frac{7.2^2 + 8.1^2 - 6.6^2}{2(7.2)(9.1)} \right)$ which gives: $\theta = 50.7^{\circ}$

Index

Algebra (Terminology) (Page 7)	Equations (The Equation of a Circle) (Page 12)	LCM (Page 1)	Rounding to 1 SF (Page 2)
Algebraic Fractions (Page 23)	Equations (The Equation of a Straight Line) (Page 15)	Length of a Line Segment (Page 14)	Rounding to 2 DP (Page 2)
Algebraic Proof (Page 24)	Estimations and Approximations (Page 2)	Listing Outcomes Systematically (Page 31)	Rounding to 2 SF (Page 2)
Angles (Basic Angle Facts) (Page 39)	Exponential Functions (Page 4)	Loci and Regions (Page 42)	Rules of Indices (Fractional Powers) (Page 8)
Angles (Interior and Exterior Angles in Polygons) (Page 40)	Expressions (Simplifying) (Page 7)	Lower Quartile (Page 28)	Rules of Indices (Negative Powers) (Page 7)
Angles (Opposite Angles) (Page 39)	Extrapolation (Page 27)	Metric Measures (Page 39)	Rules of indices (Raising to a Power) (Page 8)
Angles (Types of Angle) (Page 39)	Factorising (Quadratics) (Page 8)	Metric Units (Page 44)	Rules of Indices (Zero Power) (Page 8)
Angles in Parallel Lines (Alternate Angles) (Page 39)	Factorising (Single Brackets) (Page 8)	Midpoint of a Line (Page 14)	Sampling (Definitions) (Page 27)
Angles in Parallel Lines (Co-interior Angles) (Page 39)	Factorising (The Difference of 2 Squares) (Page 9)	Moving Averages (Page 26)	Scatter Graphs and Line of Best Fit (Page 27)
Angles in Parallel Lines (Corresponding Angles) (Page 39)	Factors (Page 1)	Multiples (Page 1)	Sequences (Basic Number Patterns) (Page 22)
Area of a Circle (Page 34)	Formulae (Rearranging) (Page 10)	Negative Numbers (Adding and Subtracting) (Page 4)	Sequences (Fibonacci Sequences) (Page 23)
Area Under a Curve (Page 21)	Formulae (Substituting Into) (Page 10)	Negative Numbers (Multiplication & Division) (Page 4)	Sequences (Notation) (Page 22)
Asymptotes (Page 18)	Formulae (Writing) (Page 10)	Nets (Sketching the Net of a Solid) (Page 35)	Sequences (nth Term of a Linear Sequence) (Page 22)
Averages (Mean From a Table) (Page 26)	Fractions (Adding) (Page 3)	Parallel and Perpendicular Lines (Page 15)	Sequences (nth Term of a Quadratic Sequence) (Page 22
Averages (Mean) (Page 26)	Fractions (Dividing) (Page 3)	Parallelograms (Area) (Page 33)	Set Notation (Page 32)
Averages (Median) (Page 26)	Fractions (Finding a Quantity) (Page 3)	Percentages (Change) (Page 3)	Similar Shapes (Page 37)
Averages (Mode) (Page 26)	Fractions (Multiplying) (Page 3)	Percentages (Reverse %) (Page 3)	Similar Solids (Page 38)
Bearings (Page 40)	Fractions (Ordering) (Page 2)	Percentages (Find 10%, 5% and 1%) (Page 3)	Similar Triangles (Page 37)
Best Buys (Page 6)	Fractions (Simplifying) (Page 2)	Percentages (Find a Quantity) (Page 3)	Solids (Page 37)
BIDMAS/BODMAS (Order of Operations) (Page 4)	Fractions (Subtracting) (Page 3)	Percentages (Increasing and Decreasing by a %) (Page 3)	Speed/Distance/Time (Page 44)
Bisection of an Angle and a Line (Page 42)	Fractions to Decimals (Page 2)	Percentages to Decimals (Page 2)	Spheres and Hemispheres (Area) (Page 37)
Box Plots (Comparing) (Page 29)	Fractions to Percentages (Page 2)	Perpendicular Lines (Page 15)	Spheres and Hemispheres (Volume) (Page 36)
Box Plots (Drawing) (Page 29)	Frustums (Page 36)	Pictograms (Page 27)	Square Numbers (Page 1)
Brackets (Expanding Double Brackets) (Page 8)	Functions (Composite) (Page 25)	Pie Charts (Page 26)	Square Roots (Page 1)
Brackets (Expanding Single Brackets) (Page 8)	Functions (Inverse) (Page 25)	Plans and Elevations (Page 44)	Standard Form (Calculating) (Page 4)
Capture/Recapture Method (Page 28)	Functions (Notation and Evaluating) (Page 25)	Powers (Adding and Subtracting) (Page 7)	Standard Form (Writing) (Page 4)
Circle Theorems (Page 40)	Gradient of a Line (Page 15)	Pressure (Page 44)	Stem and Leaf Diagrams (Page 27)
Circles (Arc Length) Page 34)	Graphs (Cubic Graphs) (Page 17)	Prime Numbers (Page 1)	Stratified Sample (Page 28)
Circles (Area of a Sector) (Page 34)	Graphs (Distance/Time Graphs) (Page 44)	Prism (Volume of a Prism) (Page 35)	Surds (Adding and Subtracting) (Page 5)
Circles (Area) (Page 34)	Graphs (Graph Recognition) (Page 16)	Probability (AND & OR Rules) (Page 32)	Surds (Multiplying and Dividing) (Page 5)
Circles (Circumference) (Page 34)	Graphs (Quadratic Graphs from a Table) (Page 16)	Probability (Basic) (Page 31)	Surds (Rationalising the Denominator) (Page 5)
Circles (Parts) (Page 34)	Graphs (Sketching Quadratic Graphs) (Page 16)	Probability (Experimental Probability) (Page 31)	Surds (Simplifying) (Page 5)
Completing the Square (Page 9)	Graphs (Solving Simultaneous Equations) (Page 11)	Probability (Independent Events) (Page 32)	Symmetry (Line) (Page 43)
Composite Shapes (Area) (Page 34)	Graphs (Straight line (linear) Graphs) (Page 14)	Probability (Mutually Exclusive Events) (Page 31)	Symmetry (Rotational) (Page 43)
Composite Shapes (Perimeter) (Page 34)	Graphs (The Graph of a Circle) (Page 12)	Probability (Notation) (Page 31)	Tangents to Curves (Page 20)
Cone (Curved Surface Area) (Page 36)	Graphs (Transformations) (Page 19)	Probability (Of Something Not Happening) (Page 31)	Time Series Graphs (Page 26)
Congruent Shapes (Page 37)	Graphs (Transforming Trig Graphs) (Page 48)	Probability (Tree Diagrams) (Page 32)	Transformations (Page 43)
Congruent Triangles) (Page 38)	Graphs (Trigonometric Graphs) (Page 48)	Product of Prime Factors (Page 1)	Trapezium (Area) (Page 33)
Correlation (Page 27)	Graphs (Velocity/Time Graphs) (Page 44)	Proportion (Basic) (Page 6)	Tree Diagrams and Frequency Trees (Page 32)
Cube Numbers (Page 1)	Growth and Decay (Page 4)	Proportion (Direct and Inverse) (Page 6)	Triangle (Area) (Page 33)
Cuboids (Surface Area of a Cuboid) (Page 35)	HCF (Page 1)	Proportion (Graphs) (Page 7)	Triangles (Types of Triangle) (Page 42)
Cuboids (Volume of a Cuboid) (Page 34)	Histograms (Drawing) (Page 30)	Pyramid (Volume of a Pyramid) (Page 36)	Trigonometry (Graphs of Trig Functions) (Page 48)
Cumulative Frequency (Graphs) (Page 28)	Histograms (Interpreting) (Page 31)	Pythagoras Theorem 2D (Page 47)	Trigonometry (Ratios SOH/CAH/TOA) (Page 48)
Cumulative Frequency (Tables) (Page 28)	Identities (Page 7)	Pythagoras Theorem 3D (Page 47)	Trigonometry (Special Values) (Page 48)
Cylinder (Volume of a Cylinder) (Page 35)	Inequalities (Quadratic Inequalities) (Page 19)	Quartiles (Page 28)	Trigonometry (The Cosine Rule) (Page 49)
Decimals (Converting Recurring Decimals to Fractions) (Page 5)	Inequalities (Reading and Writing) (Page 18)	Range of a Data Set (Page 26)	Trigonometry (The Sine Rule) (Page 49)
Decimals (Multiplying) (Page 4)	Inequalities (Set Notation) (Page 18)	Rational and Irrational Numbers (Page 1)	Two Way Tables (Page 27)
Decimals to Fractions (Page 2)	Inequalities (Shading Regions) (Page 18)	Ratios (Simplifying) (Page 6)	Upper and Lower Bounds (Page 2)
Density/Mass/Volume (Page 44)	Integers (Page 1)	Ratios (1:n and n:1) (Page 6)	Upper Quartile (Page 28)
Equations (Equation of a Tangent to a Circle) (Page 41)	Interest (Simple and Compound) (Page 4)	Ratios (Already Shared) (Page 6)	Using a Calculator (Page 35)
Equations (Equations with Fractions) (Page 10)	Interpolation (Page 27)	Ratios (To Fractions and to percentages) (Page 6)	VAT (Page 4)
Equations (Linear & Non Linear Simultaneous Eqs) (Page 13)	Intervals and bounds (Page 2)	Reciprocal (Page 1)	Vectors (Adding, Subtracting and Multiplying) (page 45
Equations (Simultaneous Linear Equations) (Page 11)	IQR (Page 28)	Rectangles (Area) (Page 33)	Vectors (Geometry) (Page 46)
Equations (Solving by Iteration) (Page 13)	Iteration (Page 13)	Rectangles (Perimeter) (Page 33)	Vectors (Parallel and Collinear Vectors) (Page 46)
Equations (Solving Linear Equations) (Page 10)	Kinematics (SUVAT) (Page 45)	Relative Frequency (Page 31)	Vectors (Resultant Vectors) (page 45)
Equations (Solving Quadratic Equations (Page 11/12)	Kite (Area) (Page 33)	Rounding to 1 DP (Page 2)	Venn Diagrams (Page 32)

Date	Topic I need to work on	What have I done about it?	Teacher Suggestions	Update	Has progress been made?
10/1/2017	Finding the area of a circle	I have watched videos and taken my notes home from lessons to practice.	Always have the formula to hand and substitute the values in.	10/2/2017	Yes, I can now do the basic examples and learning harder examples